## Imputing missing data from stock time series



Khanh Nguyen, Yizhen Zhao,

Evgeniya Lagoda, Himanshu Raj,

Carlos Owusu-Ansah, Sergei Neznanov



THE ERDŐS INSTITUTE

Helping PhDs get and create jobs they love at every stage of their career.

### Goal: Find the best imputing models for AAPL stock price in 2023



In this plot we removed 7 intervals of 5 consecutive data points

We consider 1, 2, 3, 4, and 5 missing consecutive days.

| Date                      | Open       | High       | Low        | Close      | Volume    |
|---------------------------|------------|------------|------------|------------|-----------|
| 2023-01-03 00:00:00-05:00 | 129.215470 | 129.830399 | 123.155395 | 124.048042 | 112117500 |
| 2023-01-04 00:00:00-05:00 | 125.853183 | 127.608724 | 124.057975 | 125.327515 | 89113600  |
| 2023-01-05 00:00:00-05:00 | 126.091211 | 126.725981 | 123.740581 | 123.998451 | 80962700  |
| 2023-01-06 00:00:00-05:00 | 124.980372 | 129.225391 | 123.869520 | 128.560867 | 87754700  |
| 2023-01-09 00:00:00-05:00 | 129.403910 | 132.319889 | 128.828647 | 129.086517 | 70790800  |

### Exploratory data analysis



#### Summary statistics:

| Mean               | 0.272  |
|--------------------|--------|
| Standard deviation | 2.11   |
| Skewness           | -0.257 |
| Excess kurtosis    | 1.82   |

The prices follow a **random walk** where the price differences are **approximately normally distributed** of a large range of price differences.

Since the excess kurtosis is positive (i.e., there are outliers), these differences actually follow a **fat-tailed** distribution

This is reflective of the Efficient Market Hypothesis where the simplest possibility is to predict the last value: Last Observation Carried Forward

### Last observation carried forward



Comparing to the true data this yields an MSE of 11.138

Can we do better?

# Models

| Models                                           | Apple's<br>Features          | Other features                                    |  |
|--------------------------------------------------|------------------------------|---------------------------------------------------|--|
| Linear Interpolation                             | Close values                 | None                                              |  |
| Rolling Average                                  | Close values                 | None                                              |  |
| Double Exponential<br>Smoothing                  | Close values                 | None                                              |  |
| SARIMA / Average over<br>forward & reverse ARIMA | Close values                 | None                                              |  |
| KNN(2)                                           | Open values and dates        | None                                              |  |
| Regression                                       | Close Daily<br>Return, Close | Close Daily Return<br>NVDA, MSFT, TSM, META, GOOG |  |
| VAR(9)                                           | Close Difference             | NVIDIA's Close Difference                         |  |

#### Baseline – Linear Interpolation



Ime

MSE: 3.475

Certainly better than LOCF

### Regression on daily returns

$$DR=rac{X_t-X_{t-1}}{X_{t-1}}$$

#### Years 2020-2022

![](_page_5_Figure_3.jpeg)

![](_page_5_Figure_4.jpeg)

![](_page_5_Figure_5.jpeg)

### Granger Causality determines VAR order

![](_page_6_Figure_1.jpeg)

| Y X    | Apple  | Google | NVIDIA |
|--------|--------|--------|--------|
| Apple  | 1.0    | 0.5876 | 0.0158 |
| Google | 0.0713 | 1.0    | 0.2592 |
| NVIDIA | 0.6800 | 0.8959 | 1.0    |

### **Results**

![](_page_7_Figure_1.jpeg)

3.16

10.0

8 10 12 Number of Consecutive Missing Points

#### Regression, VAR and KNN, performance on year 2023 data.

![](_page_8_Figure_1.jpeg)

## Conclusion

- Linear interpolation is a robust choice for both small and large gaps.
- When there is sufficiently high correlation between prices movements of two companies, one may be used to impute missing data in the other.

## Next steps

- Include other predictors that affect closing prices
- Systematically explore the circumstances under which the methods we evaluated outperform linear interpolation.
- Explore advanced techniques like State Space Models (Kalman Filter, Kalman Smoother) and Neural Network (MPL, Generative Adversarial Networks and Neural ODEs).

### Acknowledgements

We would like to thank Roman Holowinsky, Steven Gubkin, Karthik Prabhu and Alec Clott