Imputing missing data from stock time series
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oal: Find the best imputing models for AAPL stock price in 2023

Apple stock prices with missing values
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Date
2023-01-03 00:00:00-05:00
2023-01-04 00:00:00-05:00
2023-01-05 00:00:00-05:00
2023-01-06 00:00:00-05:00
2023-01-09 00:00:00-05:00
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Time (in no. of days)
Open High
129.215470 129.830399
125.853183 127.608724
126.091211  126.725981
124.980372 129.225391

129.403910 132.319889

200 250

Low
123.155395
124.057975
123.740581

123.869520

128.828647

Close

124.048042
125:327515
123.998451
128.560867

129.086517

In this plot we removed 7 intervals of
5 consecutive data points

We consider 1, 2, 3,4, and 5
missing consecutive days.

Volume
112117500
89113600
80962700
87754700
70790800



Close price differences

Exploratory data analysis

AAPL price differences (for the year 2023)
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Summary statistics:

Mean
Standard deviation
Skewness

Excess kurtosis

0.272

2.1

-0.257

1.82
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Daily close price differences

Lag

The prices follow a random walk where the price differences are
approximately normally distributed of a large range of price differences.

Since the excess kurtosis is positive (i.e., there are outliers), these
differences actually follow a fat-tailed distribution

This is reflective of the Efficient Market Hypothesis where the simplest
possibility is to predict the last value: Last Observation Carried Forward



Last observation carried forward
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Comparing to the true data this
yields an MSE of 11.138

Can we do better?



Models

Models

Linear Interpolation

Rolling Average

Double Exponential
Smoothing

SARIMA / Average over
forward & reverse ARIMA
KNN(2)

Regression

VAR(9)

Apple’s
Features

Close values

Close values

Close values
Close values
Open values and

dates

Close Daily
Return, Close

Close Difference

Other features

None

None

None

None

None

Close Daily Return

NVDA, MSFT, TSM, META, GOOG

NVIDIA’'s Close Difference

Baseline — Linear Interpolation

price

S

\ 4

time
MSE: 3.475
Certainly better than LOCF



Regression on daily returns

Apple daily return, %

Years 2020-2022
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Granger Causality determines VAR order
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N Apple | Google | NVIDIA

Apple 1.0 0.5876 || 0.0158
Google | 0.0713 1.0 0.2592

NVIDIA | 0.6800 | 0.8959 1.0



Rolling Average
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Double Exponential Smoothing
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Normalized MSE

Regression, VAR and KNN, performance on year 2023 data.

MSE of a model divided by MSE of Linear Interpolation
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Conclusion

e Linear interpolation is a robust choice for both small and large gaps.
e When there is sufficiently high correlation between prices movements of two
companies, one may be used to impute missing data in the other.

Next steps

e Include other predictors that affect closing prices

e Systematically explore the circumstances under which the methods we
evaluated outperform linear interpolation.

e Explore advanced techniques like State Space Models (Kalman Filter,
Kalman Smoother) and Neural Network (MPL, Generative Adversarial
Networks and Neural ODESs).
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