
Trick Takers
Shin Kim, Juergen Kritschgau, Sixuan Lou,

Edward Varvak, Yizhen Zhao



Objective
● Train agents to play trick taking card games, 

such as Spades
● Model Spades as a sequence of decisions 

leading to a win or loss
● Apply a deep Q-network to optimize game 

strategy



Deep Q Learning
● DQNs learn to approximate an 

unknown Q function which 
computes the optimal discounted 
cumulative reward from a given 
state and action

● We know that Q function satisfies 
the relation Q(s,a) = r +𝛾max Q(s’,a’) 

● Training minimizes the error 
between predicted value Q(s,a), and 
the target value r + 𝛾max Q(s’,a’)

Initialize DQN

Copy DQN to 
make target 

network

Simulate games

Hold target 
network fixed

Score games 
with target 

network

Train DQN

Trainable DQN



Learning Framework
● Each episode of the training 

starts a new game
● Player asks the policy 

network each turn for an 
action (ε-greedy)

● The environment computes 
the next state and reward 
given the action

● Reward = 1 if the player wins 
this trick, Reward = 0 
otherwise

● Store this transition and 
perform a backpropagation 
using the loss of Q-functions Optimizer

Replay 
Memory

{(state, action, 
new_state, 
reward)}

Game Simulation Environment

Sample batches

Player

action

current state

store transition
(state, action, new_state, reward)

backpropagation

soft update 
the weights

policy network

target network



Network Architecture
● The network takes inputs of length 

3016, consisting of the hand (52), the 
cards played (56 x 52), and the cards 
not yet seen (52)

● The vector is then passed through 
two fully connected hidden layers

● The output layer has length 52, with 
each element denoting the network’s 
estimate for the Q-value of playing 
the corresponding card Input layer

(3016)

Hidden
Layer 1

(128)

Hidden
Layer 2

(128)

Output 
layer
(52)



Hyperparameter Tuning
Recall that the value of a state-action pair

Q(s, a) = r + γ max Q(s’, a’)

● When γ was set to 1, we 
found that the estimated 
Q-function diverged

● With γ = 0, the network was 
prone to short-term thinking, 
and failed to learn beyond a 
certain threshold

● Through experimentation, we 
found that the optimal value 
for γ was 0.3



Results 
● The results for the agent without knowledge of which moves are legal.

○ The agent was able to play for 8.5 turns on average before playing an illegal move in 100 
simulated games

● The results for the agent which selects legal moves that maximize reward.

● The performance of the baseline models.



Future Directions
● Train agents to play with bidding strategies: Optimize the agent’s decision 

making about how many tricks to bid based on its hand
● Transfer learning to other trick taking games: Apply the knowledge to 

similar games like Hearts or Bridge
● Scaling to complex game states: Increase the agent’s ability to handle 

more complex game situations
● Further train the agent against itself, to see if we can improve its 

performance


