Erdős Deep Learning Project Summer 2024

A Vocal-Cue Interpreter for Minimally Verbal Individuals

The Team: Julian Rosen, Alessandro Malusà, Monalisa Dutta, Rahul Krishna, Atharva Patil & Sarasi Jayasekara [The image is from MusicLab]

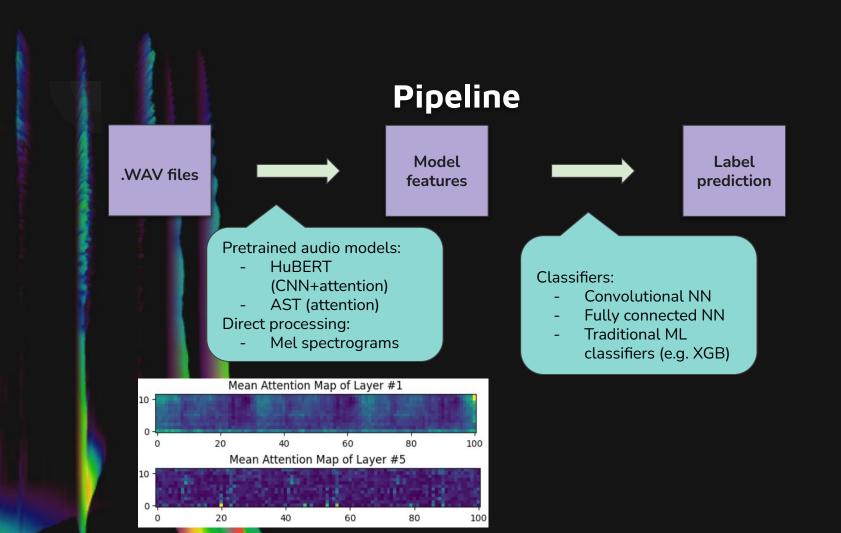
Motivation

Our work is building upon the results from a 2021 paper titled "Transfer Learning with Real-World Nonverbal Vocalizations from Minimally Speaking Individuals"

Their best model:

[Image from the Original Paper]

ReCanVo Dataset


The data was collected by the authors of the original paper, with 8 minimally verbal individuals. The audio was recorded in long sessions, that then were broken into clips and labeled.

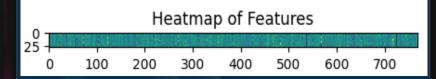
The audio samples that were collected, were then labeled by family members, or caretakers of the participant.

Labels: Happy, Dysregulated, Hungry, ...

Our Approach

- We wanted to train a model for an individual at a time
- We focused on participants 01 and 05
- For each participant,
 - We dropped labels that had fewer than 30 data points
 - Training / validation data split was done with one session being held out as the validation set
- We experimented with adding extra layers of background noise to the files in training data

More on Feature Extraction

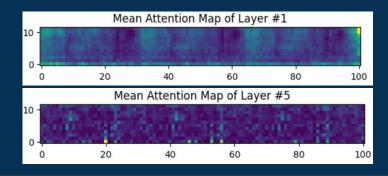

HuBERT

Architecture:

• CNN Encoder + Attention Layers

Data preprocessing:

• Features extracted from HuBERT are a list of 12 tensors. We choose the first tensor among them, and average over the time dimension.

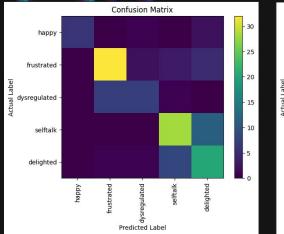

Architecture:

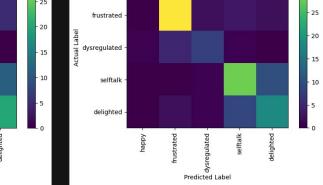
• Purely Attention Layers

Data preprocessing: We used the output of several different layers including

AST

- The initial layer (with entries averaged over one of the dimensions)
- The 1st and 5th Attention Layers




Combatting Overfitting

Confusion Matrix

35

- 30

happy

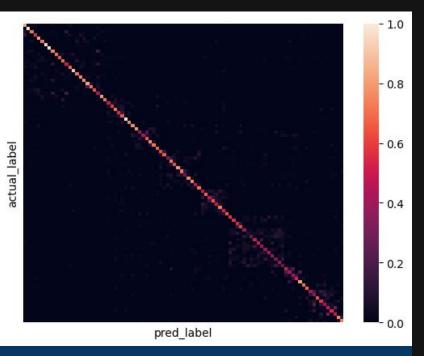
Outcome is often only a slight change in confusion matrix, but every bit helps!

Classifier has many parameters relative to size of dataset.

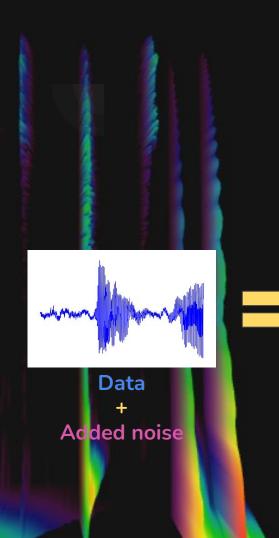
Typical problem, typical techniques:

- Early stopping
- Penalizing weights - Ridge (L2)
- Dropout

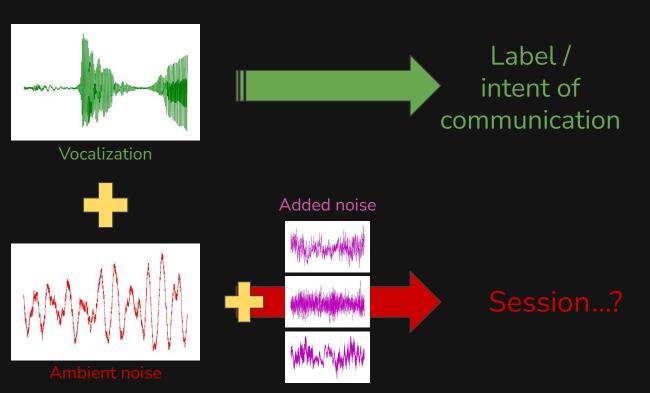
 On each training epoch, select nodes randomly to omit from network.
More specific overfitting issues as well.


Unintended Session Learning

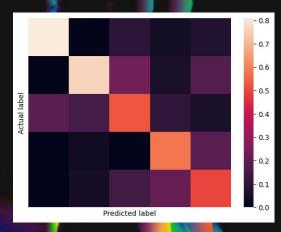
	No weight	Session weight	Session and label weight
accuracy	0.610	0.642	0.520
balanced_accuracy	0.501	0.520	0.520
unweighted_f1	0.516	0.540	0.486
UAR	0.501	0.520	0.520
logloss	1.075	1.037	1.251


Performance with fully randomized cross validation

	No weight	Session weight	Session and label weight
accuracy	0.514	0.510	0.449
balanced_accuracy	0.442	0.449	0.449
unweighted_f1	0.452	0.459	0.440
UAR	0.442	0.449	0.449
logloss	1.314	1.259	1.495

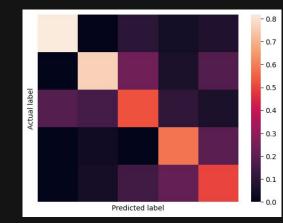

Performance with session holdout cross validation

Confusion matrix of the session classifier

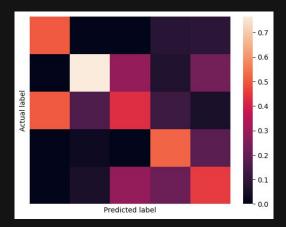

Adding Noise

Added noise from <u>DEMAND dataset</u>

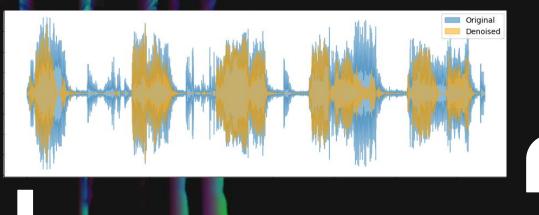
Base model – no added noise

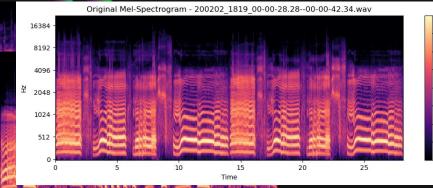

	No weight	Session weight	Session and label weight
accuracy	0.613	0.644	0.527
balanced_accuracy	0.510	0.527	0.527
unweighted_f1	0.524	0.548	0.496
UAR	0.510	0.527	0.527
logloss	1.063	1.025	1.235

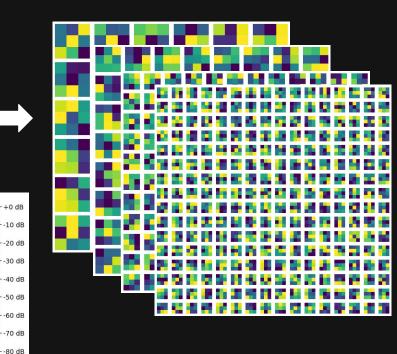
Adding Noise


One added noise, randomly selected from the entire set

	No weight	Session weight	Session and label weight
accuracy	0.614	0.645	0.530
balanced_accuracy	0.514	0.530	0.530
unweighted_f1	0.529	0.551	0.499
UAR	0.514	0.530	0.530
logloss	1.063	1.025	1.234

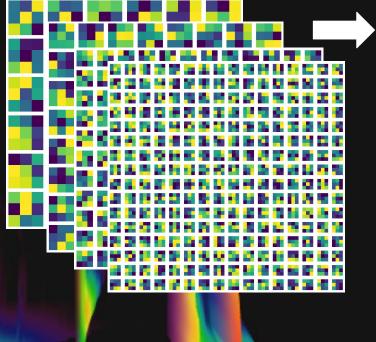

Random number of added noises, only from the class "DLIVING"

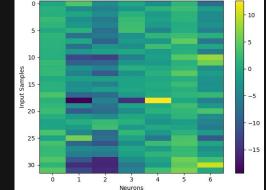

	No weight	Session weight	Session and label weight
accuracy	0.561	0.602	0.435
alanced_accuracy	0.411	0.435	0.435
unweighted_f1	0.386	0.409	0.346
UAR	0.411	0.435	0.435
logloss	1.139	1.101	1.334

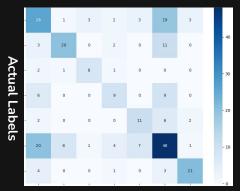


Added noise from **DEMAND dataset**

"Noise" Cancellation

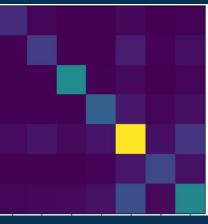






Noise-Cancellation encoder-decoder model: denoiser

"Noise" Cancellation


Predicted Labels

F1 score P01	Mel Spec only	Hubert+FC
Raw	0.54	0.77
De-noised	0.45	0.73

Results for Participant 01

Feature Extractor	Classifier	F1 Score	B H
HuBERT	1 dense layer (with penalty)	0.793	Confu
HuBERT	2 dense layers	0.793	
HuBERT	XGBoost	0.762	
AST	XGBoost	0.707	
AST	1 dense layer	0.698	
Mel Spectrograms	4 CNN layers	0.535	·

Best Performing Model: HuBERT + 1 dense layer Confusion Matrix on the Test Set

Results for Participant 05

Feature Extractor	Classifier	F1 Score	Best Performing Model: HuBERT + 2 dense layers	
HuBERT	2 dense layers	0.627	Confusion Matrix on the Test Set	
HuBERT	1 dense layer (with penalty)	0.619	- 30 - 25	
HuBERT	XGBoost	0.603	- 20	
AST	1 dense layer	0.548	- 10	
Mel Spectrograms	4 CNN layers	0.472		

Conclusions

And Observations

- On the test sets for participants 01 and 05 respectively, the best performing model displayed F1 scores of 0.712 and 0.582, both of which are improvements on the original team's results that had inspired us.
- HuBERT + a few extra layers fine tuned, worked best for the participants we considered.

Further Directions

- Combine our "noise engineering" methods with more architectures
- Attempt classification by broader label classes, e.g., by sentiment (positive vs. negative) and energy level (high vs. low).
- Build a model that can be generally trained and then be fine tuned for each individual

Special Thanks to:

Roman Holowinsky – Director of the Erdös Institute Kristy Johnson – For Advice Lindsay Warrenburg – Lead Instructor, DL Marcos Ortiz – Lead TA, DL

On behalf of the Our Team - Julian, Ale, Rahul, Atharva, Monalisa, and Sarasi.