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Near-live zero-shot adaptive speech editing



MOT IVATION AND MAIN OBJECTIVES

This would be of interest to anyone involved in television,
radio, and live streaming, as well as video and sound
editors.

The main goal behind our project is to be able to edit
speech on the fly, by removing key words and replacing
them with other words with a generated voice as similar to
the speaker's voice as possible, all while having no prior
knowledge about the speaker.

The current publicly available state of the art of zero-shot
voice cloning/speech editing – VoiceCraft (2024) and
FluentSpeech (2023) – produce high-quality results, but
suffer from slow inference times (in our experience, over
90 seconds for inference on a 3 second clip).

We decided to raise the bar by optimizing one of these
models (FluentSpeech) to be able to run inference in real-
time (~0.5 seconds for 3 seconds of audio), creating the
world’s first zero-shot voice-cloning speech editor which
runs quickly enough for live stream applications: RivusVox
Editor.



TH E BAS E MODEL: FluentSpeech



OUR CH ANG ES

CHANGE 2: replacing MFA with WhisperX and custom
wav2vec model for alignment, and substituting out some
other vanilla tools being used at different stages of
inference to ones that can keep things on GPU.

CHANGE 1: modifying the way that short silences are
handled. We found that in some cases this alleviates a
'silent phoneme problem.'

CHANGE 3: introducing a hyperparameter which changes
how the inferred audio is inserted into the original audio.
CHANGE 4: having the inferred region automatically
adjust until the silent phoneme problem no longer
happens.

Ablation study: validation results on a subset of the LibriTTS Corpus (38 speakers, 3013 utterances)
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Loss functions

1.67910.22860.78720.20010.06030.19560.2075Baseline – MFA GT

1.67560.22380.78910.19990.05960.19550.2075Change 1 – MFA GT

2.14660.62870.87710.17930.10120.16610.1942Changes 1 + 2 – MFA GT

1.21280.14270.50230.17780.06690.16630.1568Changes 1 + 2 – whisper GT



FINE-T UNING ON INDIVID UAL SPEAKERS

If the speech editor is to be used by a specific person, it
makes sense to fine-tune some of the components of the
model to that specific person.

The base model was trained on the LibriTTS corpus,
consisting mainly of American speakers.

We decided to fine-tune the model on a female British
speaker with a quite distinctive voice – the amazing
Amelia Tyler, voicing the Narrator in Baldur’s Gate III.
Having a speaker with a voice and an accent quite distant
from the bulk of the voices used in training was a
deliberate choice, in order to test the limits in tailoring the
model to such more “extreme” speakers.



TH E DATASET FOR FINE-T UNING

We found a 4 hours video on YouTube of background-noise-
free Narrator’s lines. We downloaded the audio and pre-
processed it by cutting it into chunks based on silences of a
certain minimal length and by trimming any trailing silences;
for each chunk, we then used Whisper to get a first tentative
transcript, which we then cleaned and curated manually,
before putting the whole dataset into a format that could be
passed to our model for fine-tuning.

Mean utterance length 4.25s (min 0.28s, max 20.57s)

ValidationTraining

5422178Tot number of utterances

54.7951.16Mean number of phonemes including silences 
(per utterance)

44Min number of phonemes

210230Max number of phonemes



ADAS PEECH CONDITIONAL FINE-T UNING

We performed a naïve fine-tuning, only adapting the
weights of a single bias vector added to the linear layer 
which encodes the utterance-level speaker projection (256
parameters).
Following the paradigm outlined in AdaSpeech
(https://arxiv.org/pdf/2103.00993), we modify layer
normalisations by making them conditional on the
speaker embedding. When fine-tuning, we only adapt the
model parameters directly related to the conditional layer
normalisations. This allows us to fine-tune as few
parameters as possible, while still hoping to ensure good
adaptation quality.
In the specific, we are only fine-tuning 74496 parameters
out of the 31560867 total parameters in the model, which
is 0.23% of the total. What is truly remarkable is that, by
conditionally fine-tuning these few selected layers
normalisations, the loss functions still decrease
considerably on validation, relative to the base model with
our modifications.



FINE-TUNING  RESULTS

We note that, while the fine-tuned voice resembles quite
closely the ground truth voice, the phonemes enunciation
becomes worse (it sounds like some phonemes get
swapped with some others).

We speculate that this might be due to the difference in
phoneme pronunciation between American and British
speakers. In the base model, phoneme processing
components are trained on mainly American speakers.
With our fine-tuning, we have changed the weights of the
encoder, but not those of the decoder.
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2.08320.14651.12290.25450.11280.23930.2072Baseline (no fine-tuning)

1.33970.08890.56800.21870.08680.19930.1781Naïve fine-tuning

0.91670.04150.36530.16700.04600.14870.1482AdaSpeech fine-tuning

The results (on the validation set) after fine-tuning for
roughly 53k steps are:

GROUND TRUTH RECONSTRUCTED (ADASPEECH)



ABLATION S TUDY ON FINE-T UNING
After fine-tuning AdaSpeech-style, we performed an
ablation study by reverting back to their non-fine-tuned
values different combinations of groups of weights. The
following picture shows the total loss on the validation set
for the different combinations.

LEGEND
e: speaker embed layer normalisations
l: duration predictor layer normalisations
p: pitch predictor layer normalisations
s: utterance-level speaker embed linear layer
i: speaker id weight

NOTE: If a letter appears, it means that we
used the fine-tuned values; if it doesn’t
appear, it means that we reverted back to the
non-fine-tuned values.



LIVE S PEECH EDIT ING
Exploiting the near-live inference time of our speech
editing model (roughly 0.5s for a 3s audio clip), we built a
live speech editing app, which simulates a live streaming
scenario, where the audio (and video) input is processed
chunk by chunk.

We used the Tkinter module to create the app’s GUI, and
threading to coordinate and run in parallel the various
background processes needed for the app to work.

The user can specify some key words to be edited and,
with a small delay, the app processes the input, checks if
any of the key words has been found, and, if so, using our
model, it changes the words to the desired targets, and
outputs the (potentially edited) audio, together with the
transcript of the current audio segment, its spectrogram,
and video frames (if video is used). The input can come
from local .wav and .mp4 files, from a YouTube link, or
from the user’s microphone and camera.



FUTURE WORK
Properly clean the code (there are lots of vestigial remains
from the FluentSpeech code that we don't actually use)
and better integrate the various models (to eliminate
redundancies).

Conditionally fine-tune the phonemes decoder (instead of
just the encoder) as well, to improve the quality of the
generated edited speech when tailoring our model to an
individual speaker, in order to solve some phoneme
enunciation problems encountered.

Improve the stability and expand the range of
functionalities of the live-streaming speech editing app.

Include a loss which attempts to improve the smoothness
of the mel spectrogram boundary (like in FluentEditor).

Use WhisperX as ground truth phoneme alignment during
training. This would implicitly also allow for different
languages if we also use it as our phoneme tokenizer.
Consistency models to speed up spectrogram denoiser.

AdaSpeech-style conditional layer norms for speaker ids.


