
RIVUSVOX EDITOR: Near-live zero-shot adaptive voice editing 

EXECUTIVE SUMMARY 

Team: Francesca Balestrieri, Zack Bezemek 

GitHub repository: https://github.com/bezemekz/RivusVoxEditor 

Background and project overview 

The main goal behind our project was to be able to edit speech on the fly, by removing key words and 
replacing them with other words with a generated voice as similar to the speaker's voice as possible, all 
while having no prior knowledge about the speaker.  
Our objectives:  We had the following two main objectives for our project: 

• to improve the inference time and the speech editing mechanics of one the current state-of-the-
art speech editing models (FluentSpeech); 

• using our improved model, to be able to edit speech during a live streaming with a maximum fixed 
delay of possibly 10s. 

Stakeholders: Potential stakeholders include anyone involved in live streaming or live television (due to 
the live streaming speech editing app that we have developed), and video and sound editors for what 
concerns just the speech editing model. 

Modelling approach 

Speech editing model: We took as our base model the FluentSpeech model developed by Ziyue Jiang, 
Qian Yang, Jialong Zuo, Zhenhui Ye, Rongjie Huang, Yi Ren, and Zhou Zhao, which is a automatic speech 
editing architecture using a context-aware diffusion models to iteratively refine the edited mel-
spectrograms conditional on context features (see https://github.com/Zain-Jiang/Speech-Editing-Toolkit 
and https://arxiv.org/abs/2305.13612); for our base model, we ignore the stutter prediction components. 

We made the following modifications to the base model: 

• The base model uses the Montreal Forced Aligner (MFA) for the alignment of the mel spectrogram 
to the transcript. We found that the alignment timestamps of MFA are often not very precise, and 
we decided to use instead a modified version of WhisperX (with wav2vec2-xlsr-53-espeak-cv-ft as 
the aligner) because of the better alignment precision. This entailed restructuring and modifying 
parts of the base model to accommodate the change of aligner. 

• The base model implementation of how the regions of the original audio to be edited and how short 
silences are handled had some important issues, which resulted, for example, in initial/final 
phonemes of the edited regions being cut off if certain (fairly common) conditions occurred. We 
instead implemented a modified version to make the handling of the regions more stable and 
precise. 

• We improved the precision and the reliability of the computation of the duration of the mel 
spectrogram and of other markers for the edited transcript by introducing a more flexible 
hyperparameter mask_loc_buffer. 

Fine-tuning to individual speakers: If the speech editor is used by a specific person, it makes sense to 
fine-tune some of the components of the model to that specific person. Since the base model 
FluentSpeech was trained on the LibriTTS corpus, which mainly includes American speakers, we decided 
to pick a British female speaker with a quite distinctive voice as our specific speaker (the Narrator from 
Baldur's Gate 3, voiced by amazing Amelia Tyler). We found a 4 hours video of background-noise-free 
Narrator's lines on YouTube. After downloading the audio and heavily preprocessing it to cut it into clean 
segments, for each chunk we then used Whisper to get a first tentative transcript and then manually 
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cleaned the dataset, before finally putting it into a form that could be passed to our model. We then run 
two different types of fine-tuning: a naive one, and a more refined one. For the more refined type of fine-
tuning, following the paradigm outlined in the recent seminal paper AdaSpeech 
(https://arxiv.org/abs/2103.00993 ) we only fine-tuned on conditional input certain specific layers of our 
model involving the speaker embedding and speaker style. We run fine-tuning on a local machine with a 
GTX1080 gpu for 17,750 (naive)/ 53,250 (AdaSpeech-style) steps. Compared to the base model losses, 
most of the losses went significantly down with the AdaSpeech-style fine-tuning. 

Live streaming speech editing app: For the live streaming app, we used a TKinter GUI and threading to 
manage various parallel activities (input stream; transcription and inference; output to GUI; video 
handling). The user is able to then select the preferred modality of audio and video input (e.g. 
microphone/cam, YouTube urls, or files saved on the local machine) and edit the dictionary of words to be 
edited. In the GUI, the spectrogram, the transcript, the video frame (if available) of the current (possibly 
edited) segment of audio played is then shown for the user’s convenience. 

Key performance indicators 

In line with our project objectives, using ablation techniques we evaluated our model based on the speed 
of the inference time relative to the base model, and on the various loss functions used by the base model. 
We also evaluated the generated edited speech based on the more subjective metric of “sounding 
better/closer to the original speaker”.  

Results 

Our model performs inference much faster than the base model (usually in under a second). The near-live 
speed allowed us to create the live streaming speech editing app, which simulates live streaming and 
manages to keep up with the stream after inference with a maximum delay of usually 5-6 seconds. 

The modifications that we have made in the way that phoneme durations and silences are handled in the 
generation of the mel spectrogram corresponding to the edited audio yielded much more robust and 
reliable results compared to the original model, where there was a common problem of entire phonemes 
being ignored when generating the edited audio, resulting in missing syllables/sound in the output edited 
audio. 

The AdaSpeech-style fine-tuning to a specific individual speaker also yield significant decreases in all of 
the various loss functions used by the base model for training. Moreover, from a subjective perspective, the 
resulting generated voice sounds incredibly like the ground truth voice; however, we have encountered 
some worsening in phonemes enunciation (but not necessarily in alignment or prosody). We speculate that 
this is due to the profound difference between phonemes pronounced with an American accent and 
phonemes pronounced with a British accent. In the base model, both the encoder and decoder are trained 
on mainly American speakers, while due to lack of time and  difficulty of accessing the original vocoder’s 
weights we could only fine-tuned the encoder to our chosen British speaker.  

Future work 

• Properly clean the code (there are lots of vestigial remains from the FluentSpeech code that we 
don't actually use). 

• Fine-tune the phonemes decoder (instead of just the encoder) as well, in order to improve the 
quality of the generated edited speech when tailoring our model to an individual speaker, in order 
to solve some phoneme enunciation problems encountered. 

• Integrate better the various models used (remove redundancies). 

• Improve the stability and expand the range of functionalities of the live-streaming speech editing 
app. 

https://arxiv.org/abs/2103.00993


• Include a loss which attempts to improve the smoothness of the mel spectrogram boundary (like 
fluenteditor paper) 

• Use whisperx as ground truth phoneme alignment during training. This would implicitly also allow 
for different language if we also use it as our phoneme tokenizer. 

• Consistency models to speed up spectrogram denoiser 

• Adaspeech style conditional layer norms for speaker ids  


