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Introduction

• It is important for lenders to assess the risk of each borrower
• Particularly who with limited credit history

• This year, Home Credit hosts a Kaggle competition again
• Looking for a model predicting the risk of default that performs stably.

itions

• Introduction

• Describe the problem

• Introduce the 
competitions



Dataset description

• Case_id can be used to join other 

tables

• For tables with depth>1, there is a 

num_group columns for aggregation

• Default ratio is ~3.14%, a higly
imbalanced dataset

• Lots of missing values

Base table
(case id, week_num, target)

Static info

Personal info

Previous applications

Internal

Credit Bureau

Tax Registries

External



The evaluation metric

Gini = 2* AUC –1

Fitted through weekly gini -> y = ax+b

Stability metric = mean(gini) + 88.0* min(0,a) - 0.5 * std(residuals)

Used to penalize drop in 
performance



Data processing

• In some cases, we fill in null values with zeros (e.g. chilnum)

• Birth info: string -> int



Data cleaning and 
imputation

Feature engineering
Exploratory data 

analysis



Data imputation and feature engineering

Imputation:

• Filled by medians

• Missing indicators

Feature engineering:

• Weighted dpd statistics

• Risk assesment of past credit history from credit bureau
(e.g. 5%-10% chance of default -> 7.5 (float)



Exploratory 
data analysis
• Fairily week correlations

• The weighted statistics raises the 
correlations with target slightly

• 'cb_risk_mean' has the highest 
correlation (~0.2), though it has 
>80% missing values



Exploratory 
data analysis
• The basic static information does 

not tell default and non-default 
apart.

• Things get better when 
stratified.



Modeling: a binary classification task

XGBoost MLP LightGBM

Baseline: Random forest



Model: XGBoost

• No imputation required

• Runs pretty fast

• Performance not satisfactory



Model: MLP

• Imputation required

• Running Time: 53 min 55 sec

• Performance not satisfactory

Training ROC AUC Score: 0.7963112370103307
Validation ROC AUC Score: 0.5947242876872081
Testing ROC AUC Score: 0.5914501713516093

❖ Stability score 
train set: 0.5771

❖ Stability score 
valid 
set:  0.1086

❖ Stability score 
test set:

  0.1113



Model: Light GBM

• No Imputation required

• Runs pretty fast

• Performance satisfactory❖ Stability score 
train set: 
0.5621

❖ Stability score 
valid 
set:  0.5343

❖ Stability score 
test set:

  0.52108

The AUC score on the train set is: 
0.7922
The AUC score on the valid set is: 
0.7823
The AUC score on the test set is: 
0.7784



Summary of Performance (in stability metric)

XGBRFClassifier
(baseline)

XGBoost MLP Classifier LightGBM

Training -0.000 0.236 0.5771 0.562

Validating -0.000 0.209 0.1086 0.534

Testing -0.000 0.165 0.1113 0.521



Future work

Feature importance of MLP Feature importance of LightGBM

➢ We are going to add the best features of our other models to the Light GBM.
➢ We are going to add external data such as the M2 Money Stock(measure of the total 

money supply in circulation).
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