Chirp Checker

Robert Cass, Caleb Fong, Butovens Médé, Andrew Merwin, Calvin Yost-Wolff, Yang Yang

CRITTER NAMES

InsectSingers.com

CRITTER NAMES FAMILY / SUBFAMILY Eneopterinae, Gryllinae, Crickets Gryllotalpidae, Hapithinae, Mogoplistinae, Nemobiinae, Oecanthinae, Trigonidiinae Conocephalinae, Listroscelidinae, **Katydids** Phaneropterinae, Phalangopsidae, Pseudophyllinae, Tettigoniinae Cicadas Cicadidae InsectSingers.com

Models for classifying insect sounds could be useful for

Passive Acoustic Monitoring

Samuel R.P-J. Ross

Objective: build models that can coarsely classify insect sounds

Objective: build models that can coarsely classify insect sounds (a) three broad categories

Objective: build models that can coarsely classify insect sounds (a) three broad categories (b) families and subfamilies

13,462 files

From the Macaulay Library of Natural Sounds

Data Visualization: Spectrogram

By using the fast fourier transform built in to librosa applied to small time intervals, we get a form a heat map describing which frequencies we are hearing.

Data Compression: MFCCs

To compress our frequency data, we use Mel-Frequency cepstral coefficients (MFCCs), which represents smoothing each vertical strip in our spectrogram.

Two methods to try and extract the predominant frequency: The loudest frequency or the one with the most variance.

These two data points are good predictors!

5 most common fam/subfams

An rbf Support Vector Classifier (SVC) with just these two data points gets the fam/subfam correct with 50% accuracy.

[Baseline guess the most common fam/subfam does 24%].

When mapping our fam/subfam back to its appropriate critter name we get 86.5%!

[Baseline guess the most common critter does 57%]

These two data points are good predictors!

5 most common fam/subfams

Decision boundaries for SVC model

Whole recording features

-loudest and most variant frequency

-each (of 40) MFCCs mean and variance

-each (of 40) MFCCs mean and variance during the loudest half-second

-range of variant frequencies

-number of chirps per minute k-Nearest Neighbors, SVC, linear regression

Time dependent features

-spectrogram (a 257x862 matrix)

-MFCC/LFCC compression of spectrogram (a 40x216 matrix)

-MFCC compression from loudest half second (a 40x22 matrix)

Convolutional Neural Net

Linear regression does not work

- Horizontal: number of features to be used in linear regression (obtained by PCA)
- Vertical: r² value of the linear regression classifier

• The r² value never exceeds 0.5 (close to 1.0 is desirable)

k-Nearest Neighbors

Classifying 15 families/subfamilies:

62% accuracy vs. 24% baseline
 k=5

Classifying critter name:

- 87% accuracy vs. 67% baseline
 - k=5, trained on family/subfamily
- 89% accuracy vs. 67% baseline
 - k=4, trained on critter name

Using all whole recording features gave the greatest accuracy

	Predicted cicada	Predicted cricket	Predicted katydid
Actual cicada	1	4	6
Actual cricket	5	684	100
Actual katydid	2	37	341

	Predicted cicada	Predicted cricket	Predicted katydid
Actual cicada	0	6	5
Actual cricket	0	737	52
Actual katydid	0	74	306

RBF Support Vector Classifier

Classifying 15 families/subfamilies:

67% accuracy vs. 24% baseline
 C=1.5

Classifying critter name:

- 91% accuracy vs. 67% baseline
 C=1.5, trained on family/subfamily
- 91% accuracy vs. 67% baseline
 - C=1.4, trained on critter name

Using all whole recording features gave the greatest accuracy

	Predicted cicada	Predicted cricket	Predicted katydid
Actual cicada	0	9	2
Actual cricket	0	742	47
Actual katydid	0	48	332

	Predicted cicada	Predicted cricket	Predicted katydid
Actual cicada	0	9	2
Actual cricket	0	760	29
Actual katydid	0	61	319

Convolutional Neural Network

• Feature performance:

MFCC(5s) ≈ MFCC(0.5s) > MFCC mean/var ≈ Spectrogram > LFCC

- Classifying family/subfamily accuracy: 57%* (86% after converting to critter name)
- Classifying critter name accuracy: 90%*

*Accuracy of guessing the largest family/subfamily: 25%; guessing the largest critter name: 68%**

**Dataset used for CNN is a subset of the dataset used in other models

Model Performance:

KNN, RBF Support Vector Classifier, and CNN significantly improves classification accuracy compared to baseline.

KNN and RBF Support Vector Classifier perform relatively well compared to linear regression.

Future work

Expand Dataset:

Collect additional cicada samples

Increase the number of samples across all insect groups

Quality Comparison:

Compare model performance with clean, high-quality samples

Assess the impact of background noise on classification accuracy

Future work

Noise Reduction:

Develop and integrate noise reduction techniques Analyze the effectiveness of various noise filtering methods

Real-Time Classification:

Implement real-time sound classification capabilities

Test model performance in live, field conditions

Future work

Broaden Insect Categories:

Include additional insect groups beyond crickets, katydids, and cicadas

Examine and classify different families within these insect groups for more detailed analysis

User Interface:

Develop a user-friendly interface for model deployment

Create visualization tools for classification results