Prediction of Used Car Price

By Song Gao, Navdeep Rana, Yutong Duan and Xuzhi Tang

Ő

Goal of project and Stakeholders

• **Goal:** The goal of this project is to use various machine learning models to predict the price of a used car based on its given features.

• Stakeholders:

- Used Car Dealers
- $\circ~$ Car Owners Looking to Sell
- Online Car Marketplace Platforms
- Insurance Companies
- Bank and Financial Institutions

Dataset and Data Description

- We have used the "Used Car Prediction Dataset" obtained from the kaggle website<u>https://www.kaggle.com/datasets/taeefnajib/used-car-price-prediction-dataset</u>. This data is publicly available for use under the CC BY 4.0 license.
- There are 4009 instances where each row represents a unique vehicle listing with the following features: brand & model, model year, mileage, fuel type, engine, transmission, exterior and interior colors, accident history, clean title and price.

Data Cleaning

- Convert the numerical feature to correct format: model year, mileage, and price.
- Extract information from engine column by keywords regular expression search.
- Drop the electric cars entries, due to lack of instances.
- Investigate the missing values
 - By exploratory data analysis
 - By searching model information on Google
 - Drop instances with many missing values

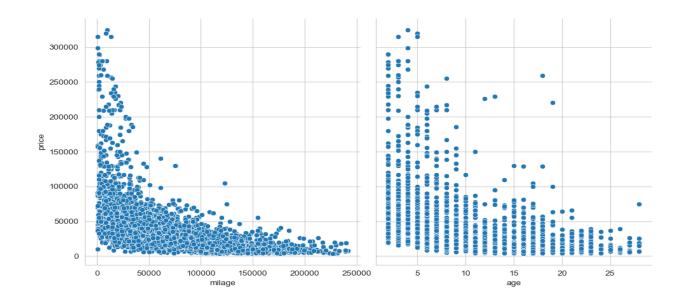
Feature Engineering

We want to add the following features:

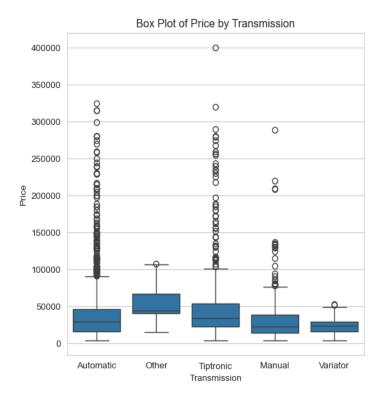
- Logarithm of price presents a better distribution than the original price.
- Categorize brand & model into Luxury and Economy.
- One-hot encoding the categorical features.
 - Clean title, accident history, colors, fuel type, transmission type, etc.
- Create various combinations of numerical features. For example: mileage per year, square root of mileage, average mileage by age groups, etc.

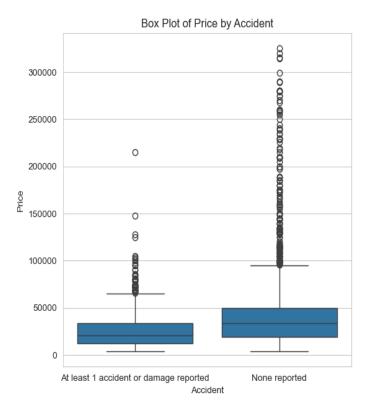
Exploratory Analysis

Relation of price with mileage and Age of Vehicle:



Effect of Type of Transmission and Accident history on Price:





Data Pipeline

Some models require comparable data scales (e.g. KNN), we have used standard scaler on the dataset before applying regression techniques.

Proposed Models

- Linear Regression
- Polynomial Regression
- K-Nearest Neighbors (KNN)
- Random Forest Regressor
- XGBoost Regressor

Models performance

Model	MAE	RMSE	R ²	MAPE	SMAPE
Linear Regression	\$10389	\$19366	0.77	27.0%	25.9%
Polynomial Regression	\$7795	\$14418	0.85	21.8%	21.2%
KNN Regression	\$9006	\$18007	0.84	24.9%	22.9%
Random Forest	\$8407	\$16058	0.87	21.6%	20.5%
XGBoost	\$6945	\$11254	0.90	22.2%	20.6%

Further Research

- Creating interaction terms, using polynomial features --Dive deeper into feature engineering.
- Introducing advanced time-series methods.
- Try other machine learning models -- testing gradient boosting alternatives.

Thank You!

We would like to thank the Erdős Institute for hosting the Data Science Bootcamp. In particular, we appreciate lectures and support from Steven Gubkin and Alec Clott.