ND path finder

Team: Joseph Schmidt, Alborz Ranjbar, Aoran Wu, Dilan Karaguler, Yangxiao Luo, Jingheng Wang

The Erdos Institute

Intro

- If we want to find the optimal pathway in some N-dimensional space what key information do we need?
 - Boundaries
 - Curvature of paths
 - Dead-ends
- Dimensionality reduction techniques typically have a trade-off between
 - Distances
 - Angles
 - High dimensional structure

Use cases

This algorithm is designed to march through N-dimensional space it can be used for:

- Optimization/best path-finding algorithm
 - Nuclear fusion optimization
 - Engine performance optimization
- Phase diagrams exploration (2D example)
- What data could recreate some "physical" systems?

Phase diagram for water at different temperatures and pressures.

Source: OpenStax. (2019). Chemistry 2e. Retrieved from https://openstax.org/details/books/chemistry-2e

Data creation

Use 2D-Perlin noise of resolution (30,30) with octaves 4

CNN Model:

CNN Model

- Description of the layers
 - Two convolution layers, one MaxPooling layer, then two deconvolution layers.
 - We use Sigmoid function as our activation function in the last layer to get values between 0 and 1.

CNN Model

- Deconvolution layer:
 - Increase the dimension of the input
 - Make sure the output is of the same dimension as input
 - Set the stride=2

CNN Model

- Loss function: Weighted cross entropy
 - loss_function=-a*log(1-y_pred)-b*log(y_pred)
 - a= #edge points/#total points b=1-a

CNN Model result visualization

••••••000000•••••0000••••0000 •••••••••• ••••••••••• •••••••• •••••••• ••••00000••••0000000000 0000

Original Image

Dropped Image

$ \begin{array}{c} \bigcirc \bigcirc$
$\begin{array}{c} \bullet \circ $
• 0 0 0 • • • 0 0 • • • • 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
••••••••00

Real Edge

Predicted Edge

KNN filler

Drop information

Fill in with KNN filler

000000000000000000000000000000000000000	
	0000
	00000
	00000
	00000
	00000
	0000
	0000
	00000
	00000
	00000
	00000
	00000
●●○○○○●●●●●○○○○○○○○○○○●●●●●●○○○○○○●●●●●	00000
000000000000000000000000000000000000000	0000
000000000000000000000000000000000000000	
	00000
	00000
	00000
	00000
000000000000000000000000000000000000000	00000
	00000
000000000000000000000000000000000000000	00000
000000000000000000000000000000000000000	00000
000000000000000000000000000000000000000	00000
000000000000000000000000000000000000000	
000000000000000000000000000000000000000	
000000000000000000000000000000000000000	
	00000

KNN-CNN Model:

KNN-CNN Model result visualization

•••••0000•••••••••0000 •••••00000••••••••••000000••000 ••••••000000•••••0000••••0000 •••••••••• ••••••••••• •••••••• •••••••• ••••00000••••0000000000 0000

Original Image

Dropped Image

Real Edge

Predicted Edge

Comparing models

WCE

MSE

Future Work

- Improving boundary detection -> better path finding algorithm through the space
 - Initial exploration into Voronoi points for path finding
- Other boundary measurement methods:
 - Hausdorff distance max distance between curves (sets)
 - Chamfer distance average distance between curves
- Whether our model can generalize to higher dimensions, and if not what model(s) would be good alternatives