APPLIED NEURAL NETWORKS: STOCK PRICE PREDICTION

Ajay Aryan, Deven Gill, Dionel Jaime

THE ERDŐS INSTITUTE Revolutionary Collaborations in Academia and Industry

Table of Contents

- 1. Project Description and Data
- 2. Our General Approach:
 - a. What exactly are we predicting
 - b. How are we evaluating our models
- 3. Our Models
 - a. Neural Network Prediction: LSTM
 - b. Sliding Window Linear Regression
 - c. Naive Prediction
- 4. Future Work

What is the project about?

Predicting the stock prices is a complex task due to the volatile and dynamic nature of the financial markets.

Our Goal?

Build a model which can come close to accurately predicting the closing prices of a stock based on historical closing price data

Data Source:

From Kaggle for the SP 500 companies.

Data

- The data includes 5 years of stock data across 500 companies from 2013-02-08 to 2018-02-07.
- The data is clean without any missing or undefined entries.

🗄 date 😑	# open	# high =	# low =	# close =	# volume =	A Name =
2013-02-08	15.07	15.12	14.63	14.75	8407500	AAL
2013-02-11	14.89	15.01	14.26	14.46	8882000	AAL
2013-02-12	14.45	14.51	14.1	14.27	8126000	AAL
2013-02-13	14.3	14.94	14.25	14.66	10259500	AAL
2013-02-14	14.94	14.96	13.16	13.99	31879900	AAL
2013-02-15	13.93	14.61	13.93	14.5	15628000	AAL
2013-02-19	14.33	14.56	14.08	14.26	11354400	AAL
2013-02-20	14.17	14.26	13.15	13.33	14725200	AAL
2013-02-21	13.62	13.95	12.9	13.37	11922100	AAL
2013-02-22	13.57	13.6	13.21	13.57	6071400	AAL

Advance Auto Parts (AAP) Data

- We test our model on the AAP stock whose first 200 observations are shown.
- The data has a trend but no seasonality.

2.) Our General Approach

- For each day we wish to forecast, our models are trained on all the days in our data which precede that day.
- The last 20% of stock data is used as testing data and will only be predicted by the model which has the best time series cross-validation error on the other 80% of data.
- Each of our methods involved a "sliding window" meaning that for each day we predict, we used a fixed number of preceding days to make our prediction.
- We used a neural network approach, a linear regression approach, and a naive method of predicting stocks.

The Neural Network Approach: (LSTM)

<u>Description</u>: Long Short-Term Memory Models are neural networks which consider consecutive frames of data of some fixed window length and generate predictions based on this last group of frames.

Implementation:

- A window length of 7 days (3 business weeks) was used in training the model
- Architecture: Sequential model with dense layers: 1 input layer, 1 hidden layer, and 1 output layer.
- Average Validation MSE: \$11.015

A Regression Approach: Sliding Window Linear Regression

A linear regression on 4 years of stock data evidently has its shortcomings in predicting stock data. Given a day which we wish to predict, Sliding Windows Linear Regression uses a relatively small number W, known as the window size, and applies linear regression on the W preceding days to produce a prediction. Since a stock's value on a given day is most influenced by its values from a few days preceding it, this should produce a low error.

 A window size of 5 gives the minimum time series cross-validation error of 10.58\$.

Naive Prediction: Still the Best Model

- The Naive Prediction predicts the closing price to be the closing price of the previous day and thus uses a window size of only one day.
- The justification for this model is that stock closing prices, typically, do not change significantly from day to day.
- The Naive Prediction performed better than the other two models with a time series cross-validation error of 6.86\$ and an MSE of 7.54\$ on the test data.

Future Work

- Currently, only the stock data for one company (AAP) is used for prediction. In future iterations, data for all companies will be incorporated to build a more comprehensive model.
- Incorporating additional drivers of stock prices in our models such as the political and economic environments, that affect the rates of change in prices.
- Develop the models and test them on stocks from countries that economically and significantly different from the US market.

Acknowledgements

- Steven Gubkin
- Alec Clott

THE ERDŐS INSTITUTE Revolutionary Collaborations in

Academia and Industry