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MOTIVATING PROBLEM



ROME OR MADRID? MADRID OR ROME?



MADRID OR ROME? ROME OR MADRID?



OUR APPROACH

EXPERT DOMAIN KNOWLEDGE

AN IMAGE IS QUITE 
UNSTRUCTURED

INSPIRED BY GEOGUESSR PROS: 
they use man-made homogeneous/persistent 
features highly specific to each country as 
discriminants

+ +

BY ALSO CONSIDERING SPECIFIC FEATURES (IF AVAILABLE), 
WE IMPOSE EXTRA STRUCTURE ON THE IMAGE

ROME  ???



THE DATASET



GSV-CITIES arxiv:2210.10239 / Neurocomputing 2022

EXAMPLE OF IMAGE METADATA:

It contains ~530k images, across 23 different cities

There are more than 62k different places, spread across multiple cities

Each place is depicted by at least 4 images (up to 20 images)

All places are physically distant (at least 100 meters between any pair of places)

EXAMPLE OF A PLACE (BARCELONA, PLACE ID 17801):



ORIGINAL DATASET
23 cities
Total number of images = 529506
Total number of places = 64394 



ORIGINAL DATASET
23 cities
Total number of images = 529506
Total number of places = 64394 

BALANCED DATASET
17 cities
Total number of images = 324697
Total number of places = 57618



THE WORKFLOW
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THE PIPELINE
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End-to-end classifier
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BASELINES

Feature Baseline (top k) Top 1 Top 2 Top 3

|  

|  

|  

0.094 0.185 0.271                            0.634 0.789 0.865 

0.169 0.333 0.484  0.595 0.762 0.866 

0.263 0.391 0.495  0.536 0.643 0.821 

0.325 0.486 0.601  0.750 0.851 0.895 

PERFORMANCES  
       

Top 1 Top 2 Top 3

( ACCURACY )

0.128 0.253 0.360  0.636 0.802 0.877 

0.349 0.425 0.494  0.632 0.743 0.827 

0.142 0.241 0.321  0.630 0.783 0.865 

|  

|  

|  
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End-to-end classifier
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FEATURE DETECTORS



We used a neural network model ( ssd_mobilenet_v1_coco_11_06_2017 ) pre-trained on

COCO
COMMON OBJECTS IN CONTEXT arxiv:1405.0312



We used a neural network model ( ssd_mobilenet_v1_coco_11_06_2017 ) pre-trained on

COCO
COMMON OBJECTS IN CONTEXT arxiv:1405.0312

TOP 3 CITIES BY FREQUENCYFEATURE FREQUENCY

P(       ) ≈ 0.01 (1) CHICAGO     (2) LONDON       (3) PHOENIX

P(       ) ≈ 0.0025 (1) MIAMI       (2) CHICAGO     (3) BOSTON

P(       ) ≈ 0.005 (1) BANGKOK     (2) ROME         (3) LONDON

P(       ) ≈ 0.009 (1) LONDON     (2) ROME         (3) PRS

P(       ) ≈ 0.418* (1) LONDON     (2) LISBON         (3) ROME

TOP 3 CITIES BY FREQUENCY
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End-to-end classifier
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BASELINES

Feature Baseline (top k) Top 1 Top 2 Top 3

|  

|  

|  

PERFORMANCES  
       

 Top 1 

( ACCURACY )

0.128 0.253 0.360       0.208 |  

|  

0.142 0.241 0.321       0.208|  

0.169 0.333 0.484       0.264 

0.263 0.391 0.495       0.363 

0.325 0.486 0.601       0.444

0.349 0.425 0.494       0.416 
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End-to-end classifier
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RESULTS



PERFORMANCE ANALYSIS

Performance results of the complete pipeline according to various metrics

FINAL ACCURACY:  0.635
( essentially the end-to-end model )

F1 SCORESACCURACY



CONFUSION MATRIX

The model seems to mix up cities from similar geographic areas, but is able to distinguish between 
different geographic regions fairly well!



FUTURE IMPROVEMENTS

Improve the feature-based classifiers by getting more quality data for the 
training, so to be able to also explore more complex models.

Add more features (a starting point could be to add all the “COCO outdoors 
objects” features).

Include rural areas and use texture-based features (such as GCLM).

Improve the end-to-end model by experimenting with other architectures.

Optimise the final model’s ensemble weighting and explore other ways to 
aggregate and combine the predictions from the classifiers and the end-to-end 
model.



THANK YOU

DEMO AVAILABLE AT
https://github.com/hochfilzer/geo-locator
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