GEO-LOCATOR

➡ ROME

THE ERDŐS INSTITUTE Helping PhDs get jobs they love. Helping you hire the PhDs you need. FRANCESCA BALESTRIERI ZACK BEZEMEK DANTE BONOLIS LEONHARD HOCHFILZER AASHRAYA JHA

MOTIVATING PROBLEM

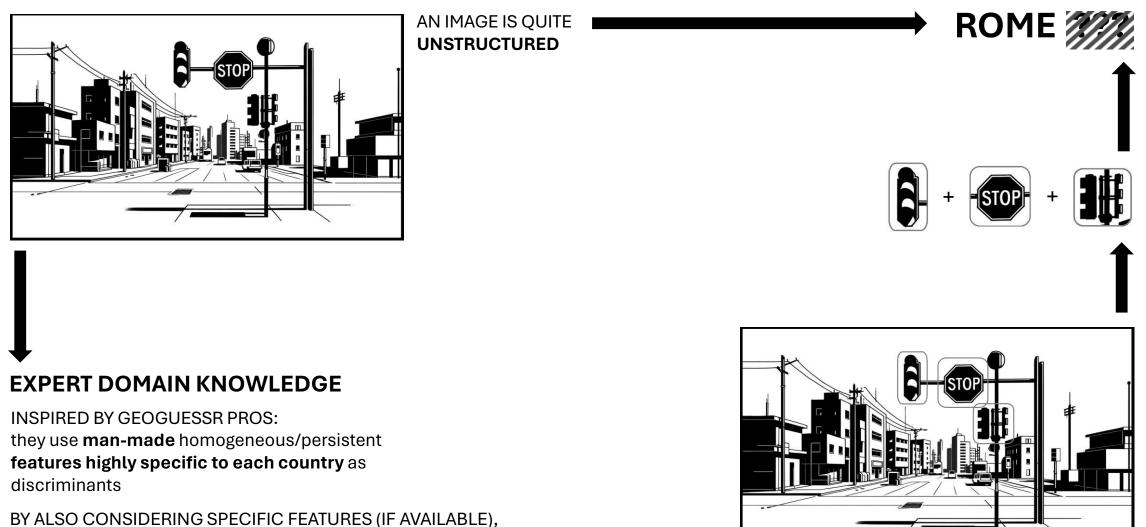
ROME OR MADRID?

MADRID OR ROME?

MADRID OR ROME?

ROME OR MADRID?

OUR APPROACH



WE IMPOSE EXTRA STRUCTURE ON THE IMAGE

THE DATASET

GSV-CITIES arxiv:2210.10239 / Neurocomputing 2022

- It contains ~530k images, across 23 different cities
- There are more than 62k different places, spread across multiple cities
- Each place is depicted by at least 4 images (up to 20 images)
- All places are physically distant (at least 100 meters between any pair of places)

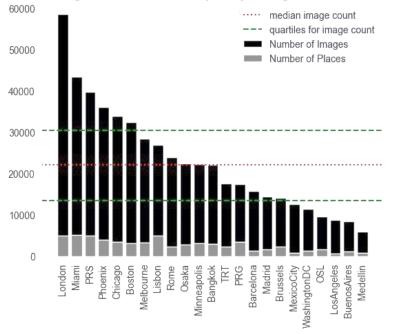
EXAMPLE OF IMAGE METADATA:

	place_id	year	month	northdeg	city_id	lat	lon	panoid
0	1678	2014	10	370	Barcelona	41.402066	2.198988	DB4DzlzCRq4lyE9FMx_9Ow

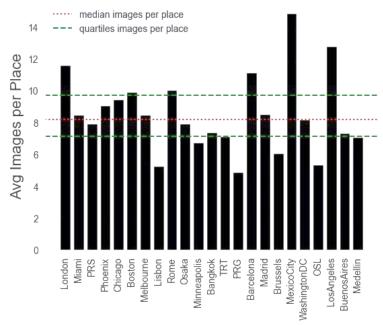
EXAMPLE OF A PLACE (BARCELONA, PLACE ID 17801):

ORIGINAL DATASET

23 cities Total number of images = 529506 Total number of places = 64394 Image/Place Count by City: Original Dataset



Avg Images per place by City: Original Dataset



ORIGINAL DATASET

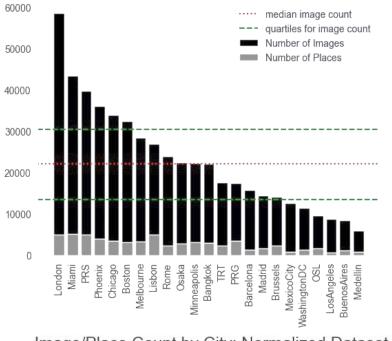
23 cities Total number of images = 529506 Total number of places = 64394

BALANCED DATASET

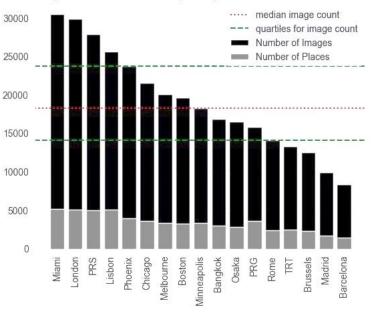
17 cities

CLEANING AND NORMALIZATION

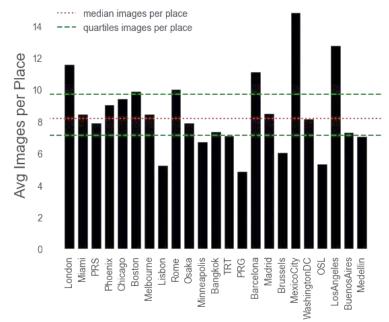
Total number of images = **324697** Total number of places = **57618**



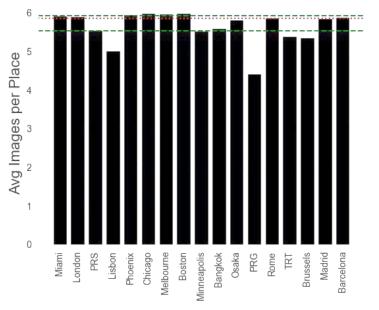
Image/Place Count by City: Normalized Dataset



Avg Images per place by City: Original Dataset

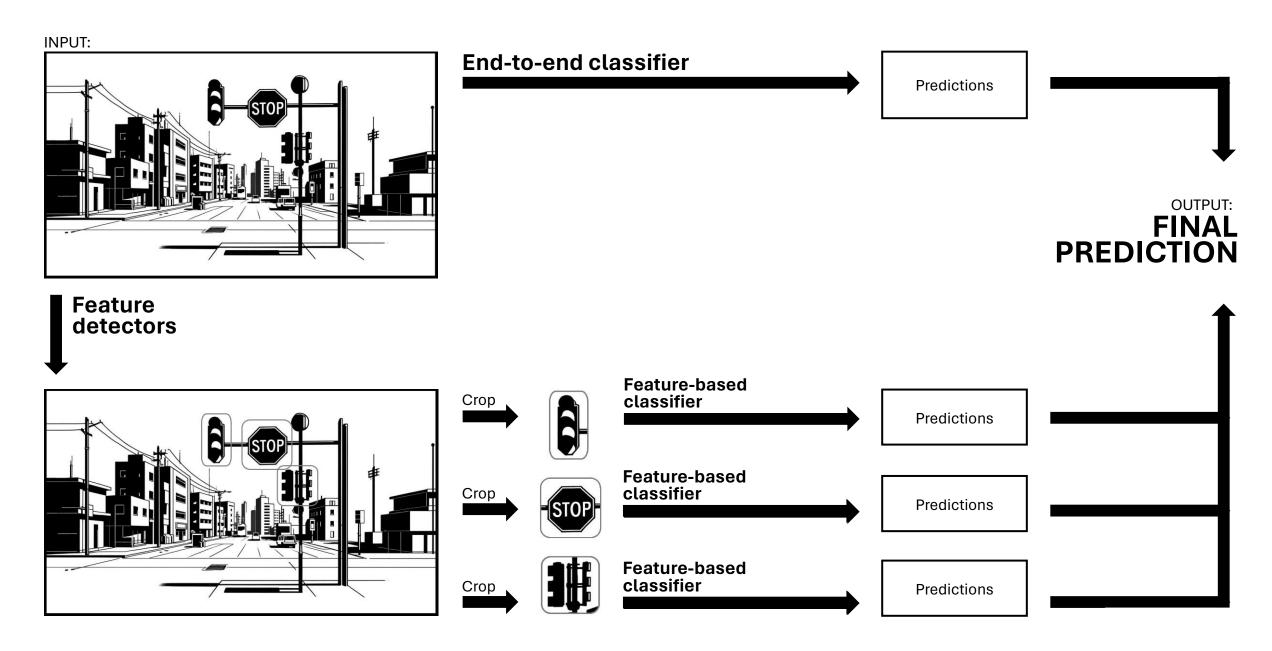


Avg Images per place by City: Normalized Dataset

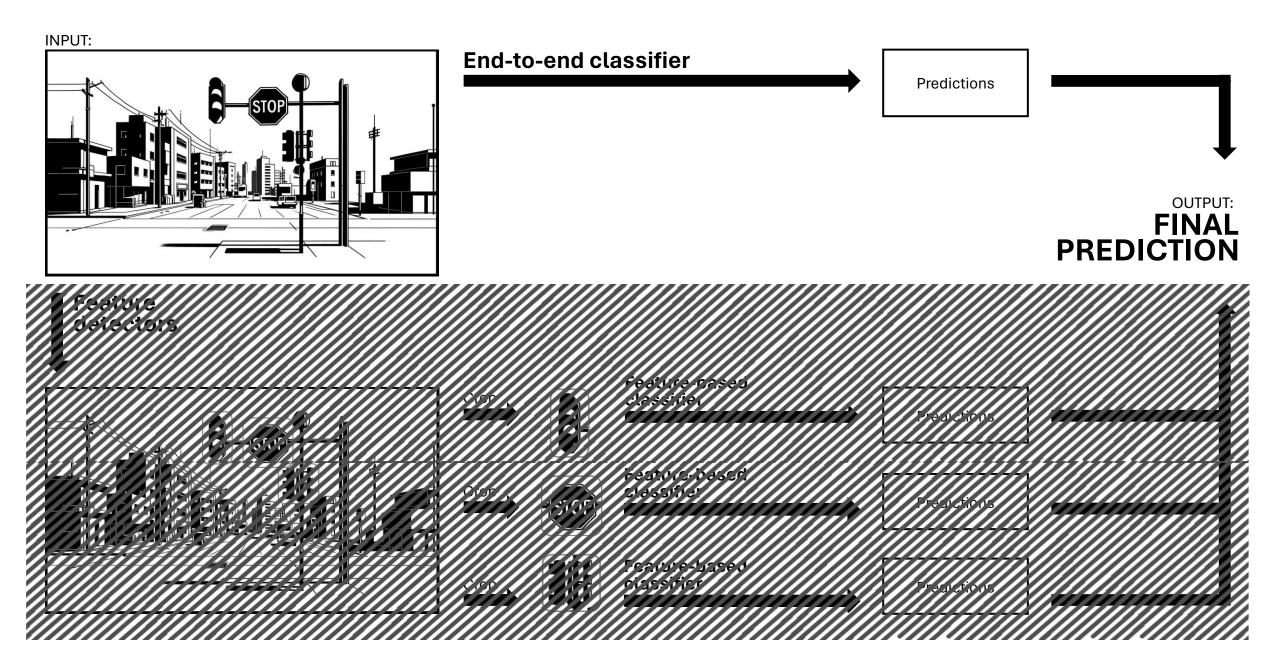


THE WORKFLOW

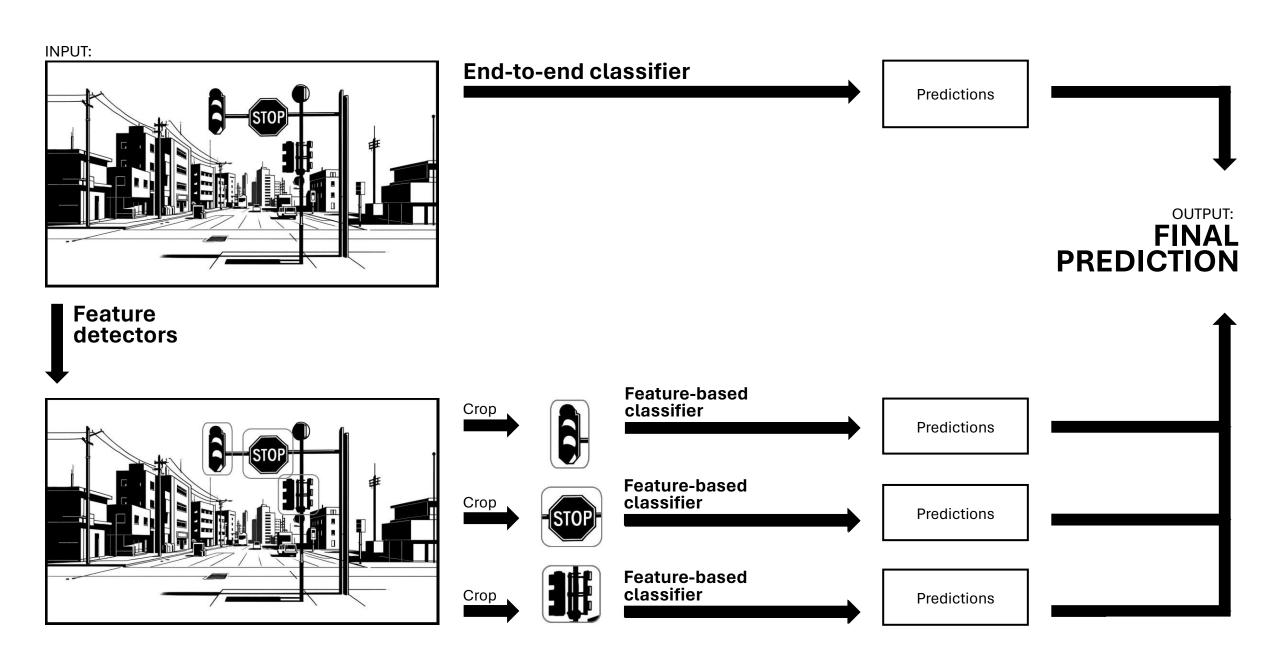
WORKFLOW



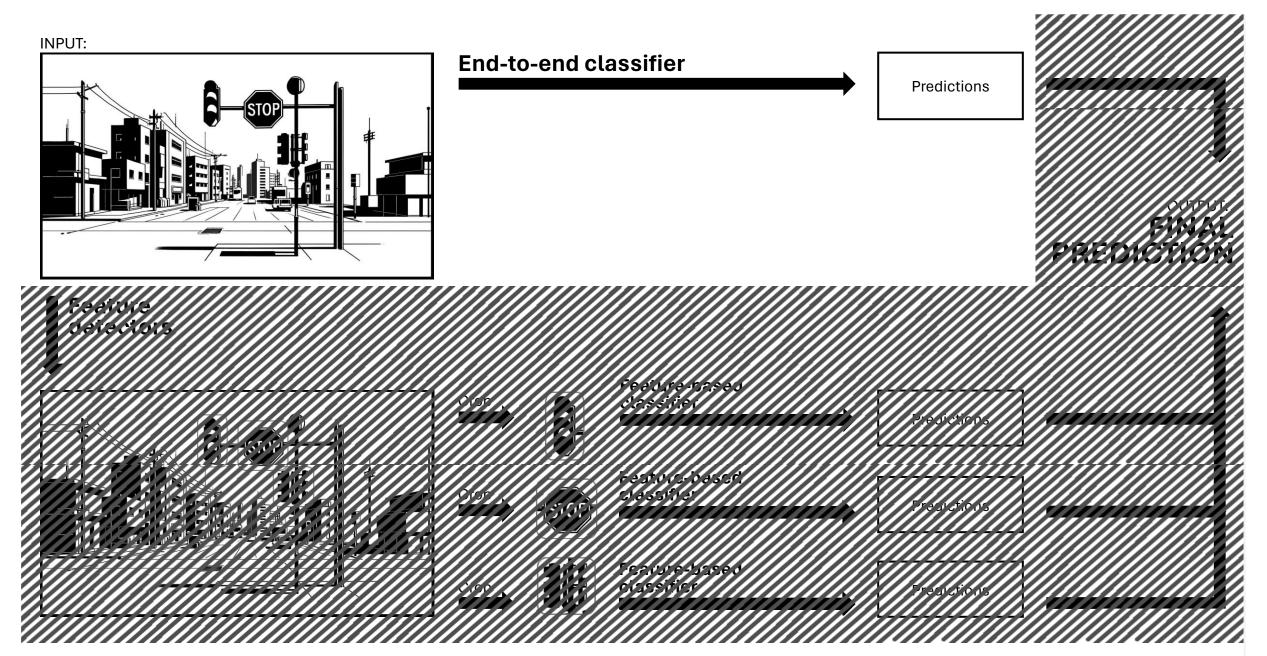
WORKFLOW (NO FEATURES DETECTED)



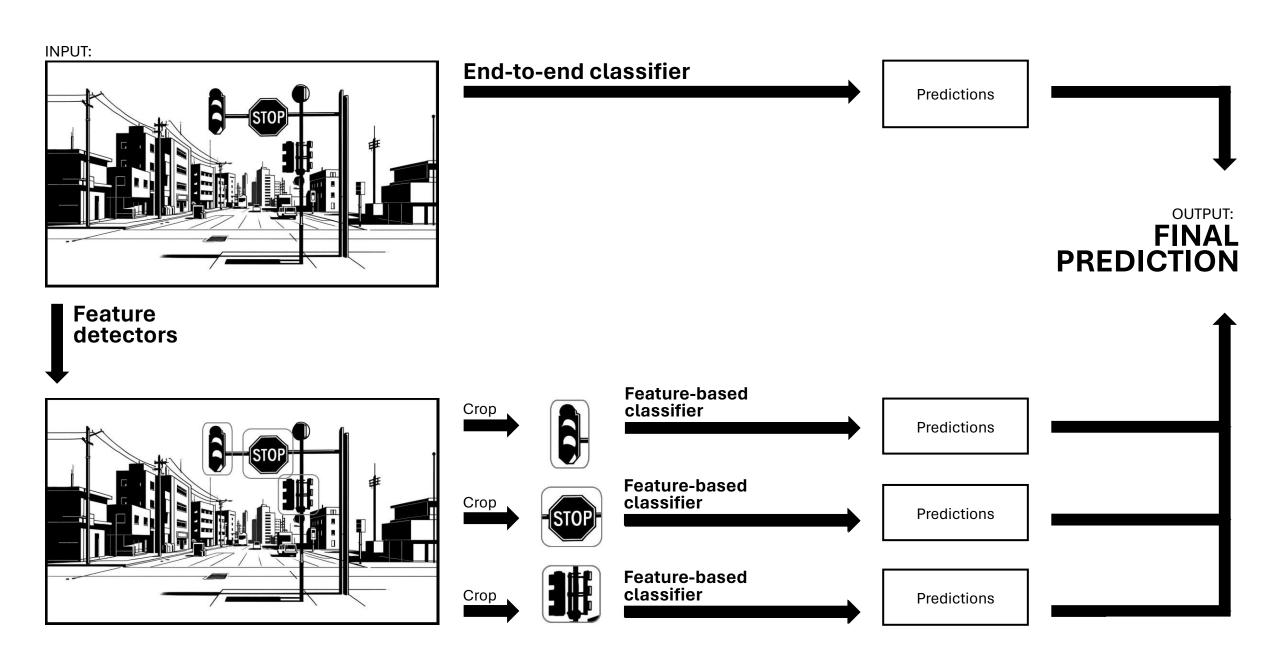
THE PIPELINE



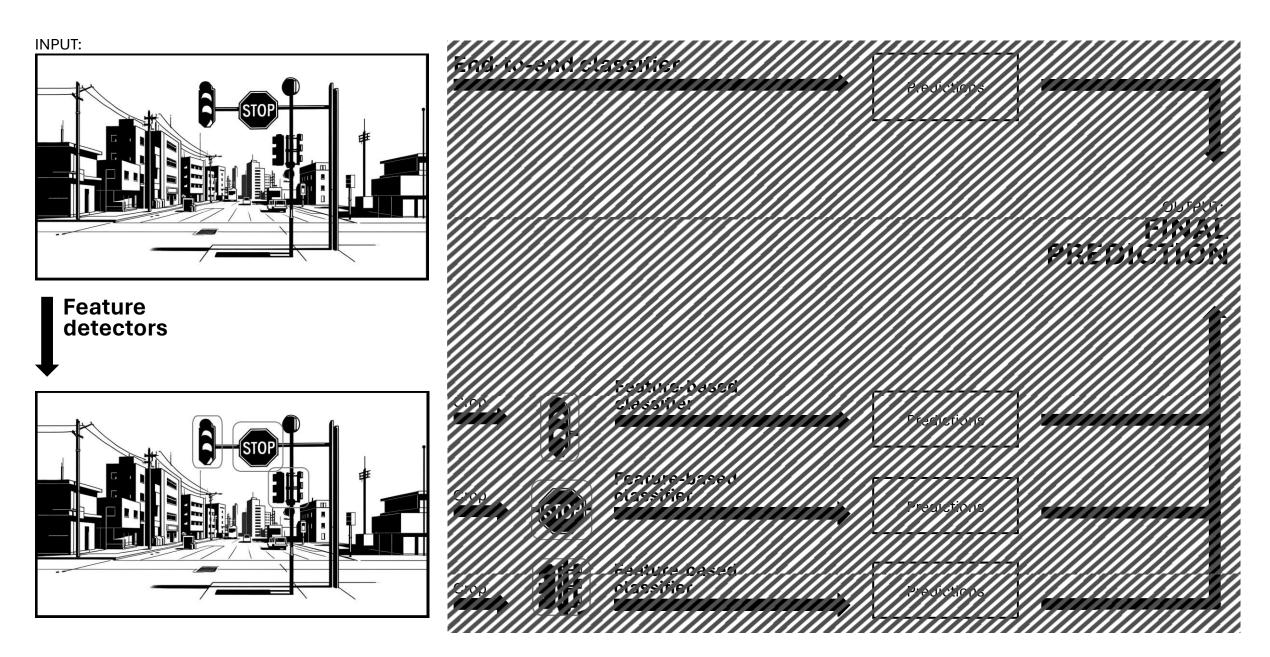
END-TO-END CLASSIFIER



	BASELINES	PERFORMANCES (ACCURACY)					
Feature	Baseline (top k)	Top 1	Top 2	Тор З	Top 1	Top 2	Тор З
Ø	$\max_{i_1 < \ldots < i_k} \left\{ \sum_{r=1}^k \mathbb{P}\left(\text{CITY}_{i_r} \right) \right\}$	0.094	0.185	0.271	0.634	0.789	0.865
	$\max_{i_1 < \ldots < i_k} \left\{ \sum_{r=1}^k \mathbb{P}\left(\text{CITY}_{i_r} \middle \textcircled{\textcircled{B}} \right) \right\}$	0.169	0.333	0.484	0.595	0.762	0.866
STOP	$\max_{i_1 < \ldots < i_k} \left\{ \sum_{r=1}^k \mathbb{P}\left(\text{CITY}_{i_r} \mid \text{stop} \right) \right\}$	0.263	0.391	0.495	0.536	0.643	0.821
ð 🍋	$\max_{i_1 < \ldots < i_k} \left\{ \sum_{r=1}^k \mathbb{P}\left(\operatorname{CITY}_{i_r} \middle \text{III} \right) \right\}$	0.325	0.486	0.601	0.750	0.851	0.895
*	$\max_{i_1 < \ldots < i_k} \left\{ \sum_{r=1}^k \mathbb{P}\left(\text{CITY}_{i_r} \right) \right\}$	0.128	0.253	0.360	0.636	0.802	0.877
	$\max_{i_1 < \ldots < i_k} \left\{ \sum_{r=1}^k \mathbb{P}\left(\operatorname{CITY}_{i_r} \right) \right\}$	0.349	0.425	0.494	0.632	0.743	0.827
	$\max_{i_1 < \ldots < i_k} \left\{ \sum_{r=1}^k \mathbb{P}\left(\operatorname{CITY}_{i_r} \right) \right\}$	0.142	0.241	0.321	0.630	0.783	0.865



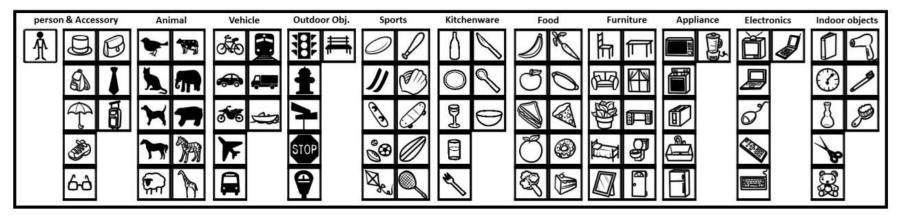
FEATURE DETECTORS



We used a neural network model (**ssd_mobilenet_v1_coco_11_06_2017**) pre-trained on

COMMON OBJECTS IN CONTEXT

arxiv:1405.0312

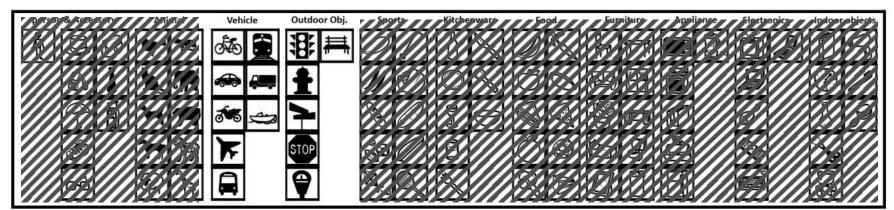


We used a neural network model (ssd_mobilenet_v1_coco_11_06_2017) pre-trained on

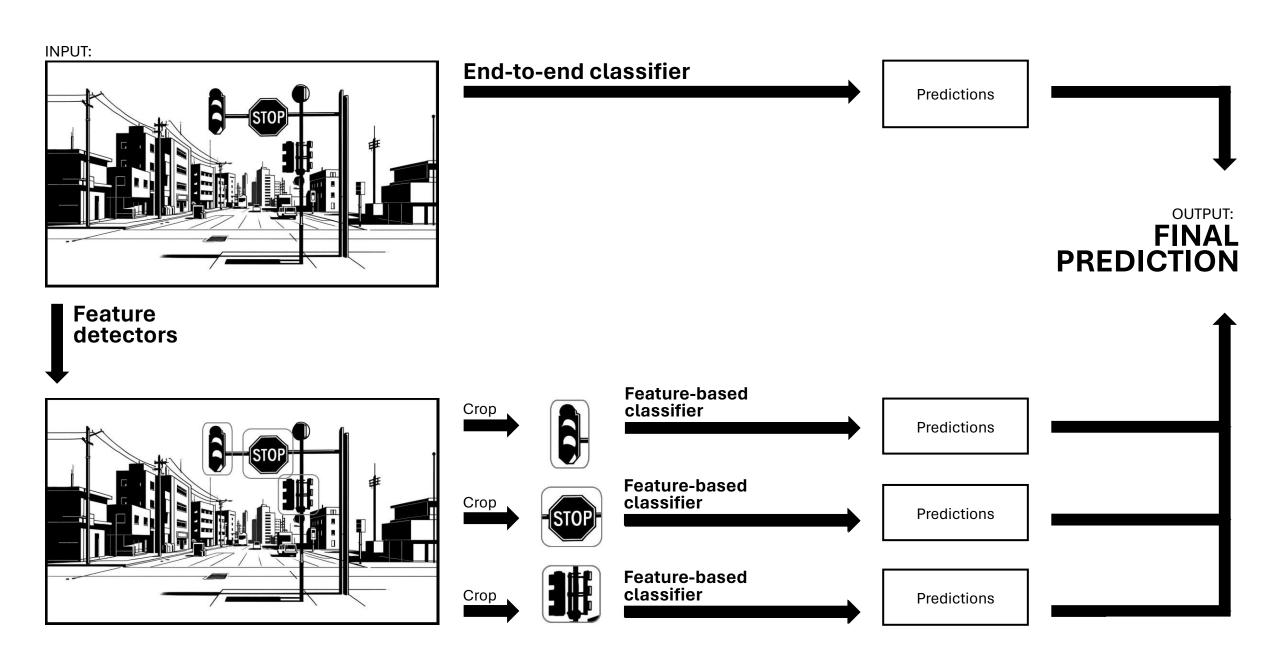
COCO

COMMON OBJECTS IN CONTEXT

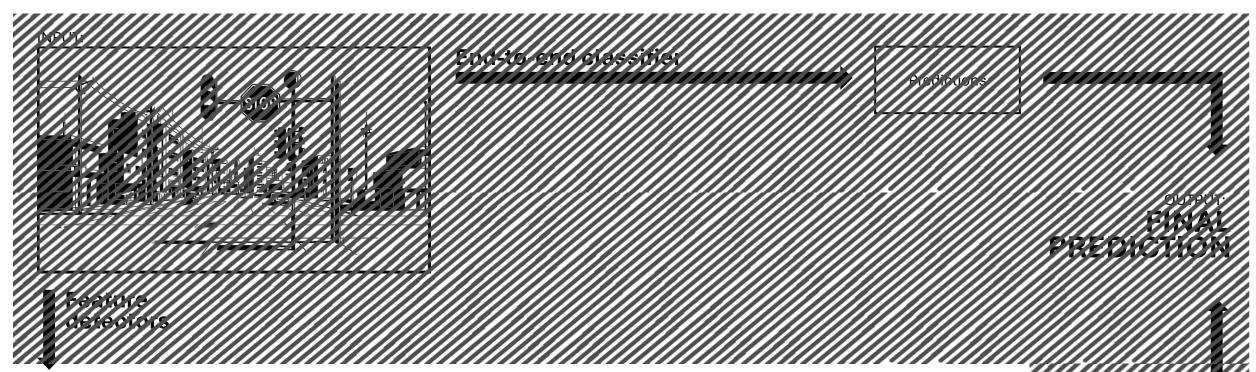
arxiv:1405.0312

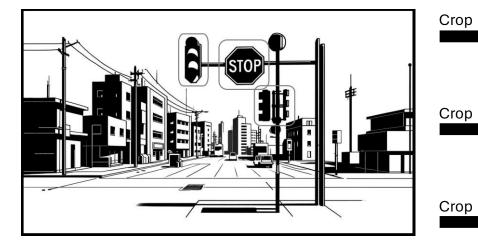


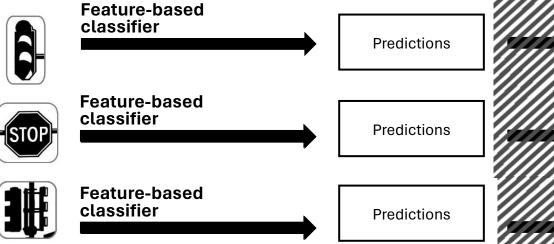
FEATURE	FREQUENCY	TOP 3 CIT	IES BY FRE	EQUENCY
	P (ﷺ) ≈ 0.01	(1) CHICAGO	(2) LONDON	(3) PHOENIX
STOP	P (, , ≈ 0.0025)	(1) MIAMI	(2) CHICAGO	(3) BOSTON
đ	P (😹) ≈ 0.005	(1) BANGKOK	(2) ROME	(3) LONDON
~~	P ((1) LONDON	(2) LISBON	(3) ROME
	P (□) ≈ 0.009	(1) LONDON	(2) ROME	(3) PRS



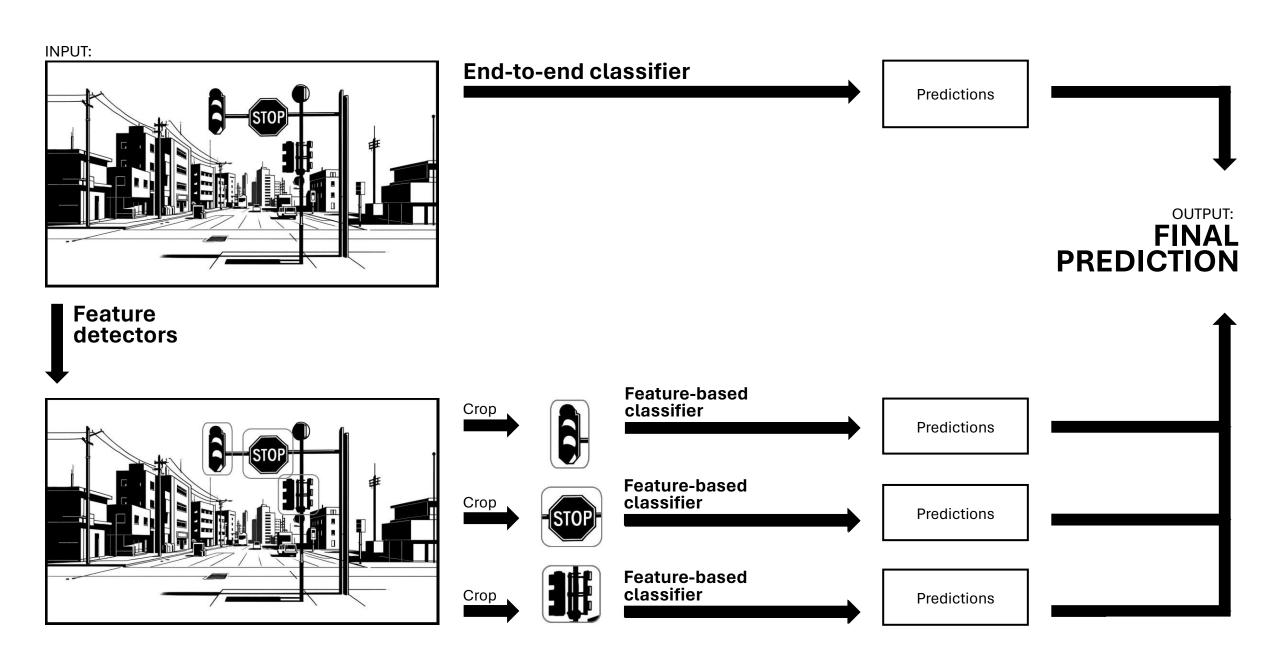
FEATURE-BASED CLASSIFIERS



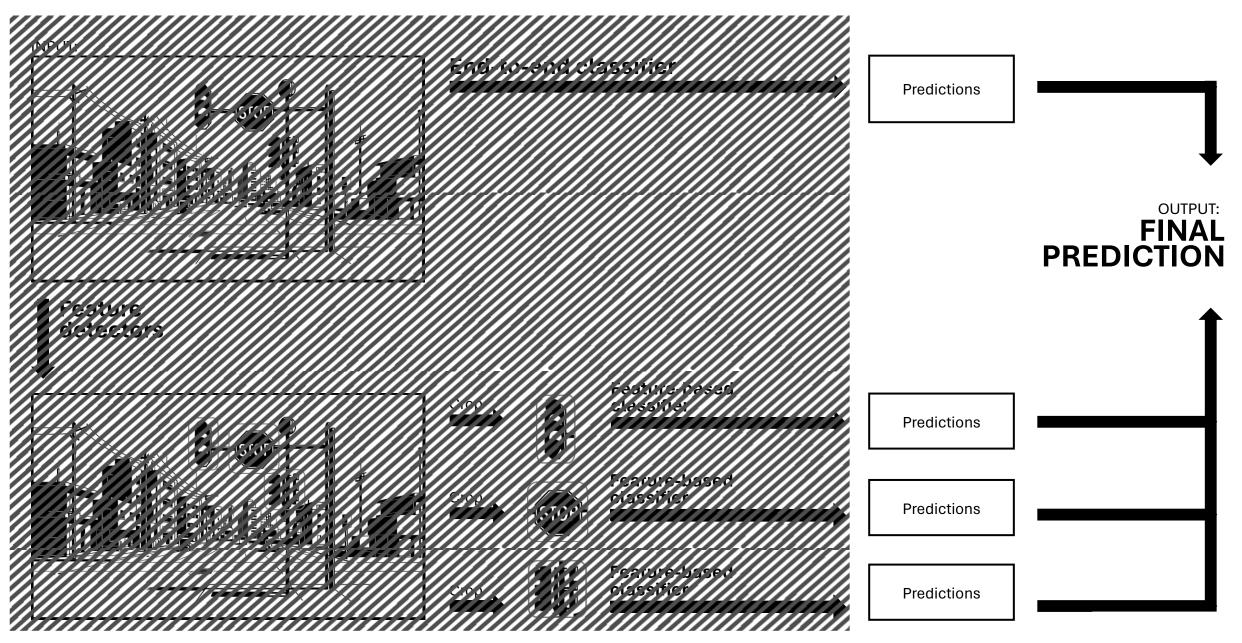




	BASELINES				PERFORMANCES
Feature	Baseline (top k)	Top 1	Top 2	Тор З	Top 1
	$\max_{i_1 < \ldots < i_k} \left\{ \sum_{r=1}^k \mathbb{P}\left(\text{CITY}_{i_r} \middle \textcircled{\textcircled{III}} \right) \right\}$	0.169	0.333	0.484	0.264
STOP	$\max_{i_1 < \ldots < i_k} \left\{ \sum_{r=1}^k \mathbb{P}\left(\operatorname{CITY}_{i_r} \mid \text{stop} \right) \right\}$	0.263	0.391	0.495	0.363
ð * 5	$\max_{i_1 < \ldots < i_k} \left\{ \sum_{r=1}^k \mathbb{P}\left(\operatorname{CITY}_{i_r} \middle \text{Im} \right) \right\}$	0.325	0.486	0.601	0.444
	$\max_{i_1 < \ldots < i_k} \left\{ \sum_{r=1}^k \mathbb{P}\left(\text{CITY}_{i_r} \right) \right\}$	0.128	0.253	0.360	0.208
	$\max_{i_1 < \ldots < i_k} \left\{ \sum_{r=1}^k \mathbb{P}\left(\text{CITY}_{i_r} \right) \right\}$	0.349	0.425	0.494	0.416
	$\max_{i_1 < \ldots < i_k} \left\{ \sum_{r=1}^k \mathbb{P}\left(\operatorname{CITY}_{i_r} \right) \right\}$	0.142	0.241	0.321	0.208



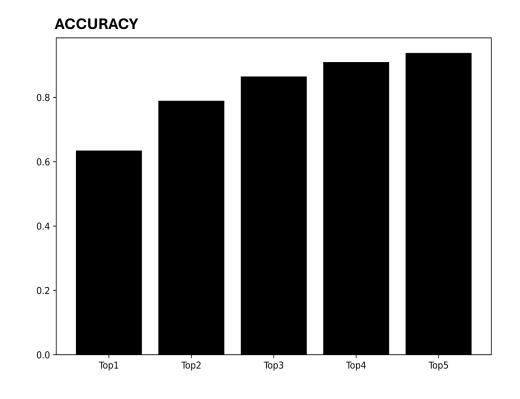
ENSEMBLE



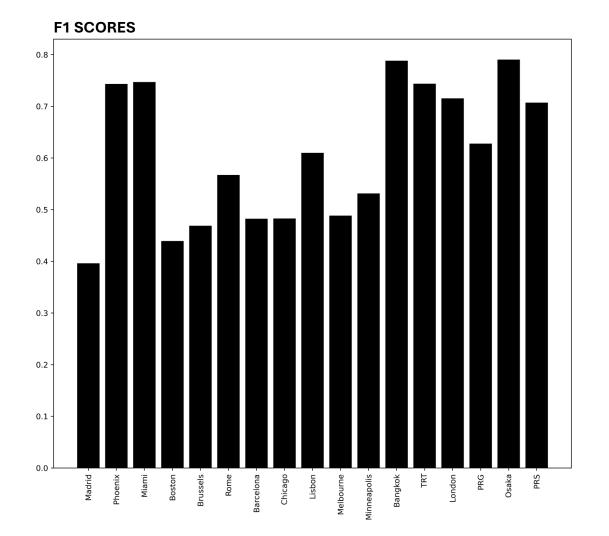
RESULTS

PERFORMANCE ANALYSIS

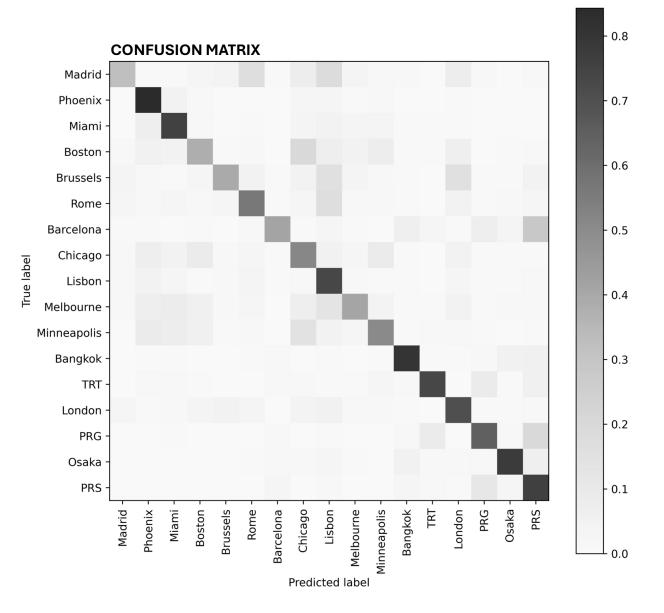
Performance results of the complete pipeline according to various metrics



FINAL ACCURACY: 0.635 (essentially the end-to-end model)



■ The model seems to mix up cities from similar geographic areas, but is able to distinguish between different geographic regions fairly well!



FUTURE IMPROVEMENTS

- Improve the feature-based classifiers by getting more quality data for the training, so to be able to also explore more complex models.
- Add more features (a starting point could be to add all the "COCO outdoors objects" features).
- Include rural areas and use texture-based features (such as GCLM).
- Improve the end-to-end model by experimenting with other architectures.
- Optimise the final model's ensemble weighting and explore other ways to aggregate and combine the predictions from the classifiers and the end-to-end model.

MADRID

THANK YOU

MADRID

DEMO AVAILABLE AT https://github.com/hochfilzer/geo-locator

ROME