Stock Insight from Global News Sentiments

Hirak Bandyopadhyay Kunal Mozumdar Rishabh Bhardwaj Yaman Sanghavi

The Erdős Institute

December 2, 2024

Motivation

Objective: How various global events like pandemic or election results can affect stock prices?

Predict stock prices/trends based on sentiment analysis of financial and geopolitical news.

Business Value:

- Optimize trading strategies based by forecasting stock prices accurately.
- ❖ Aids in more informed trading strategies for investors and financial institutions.

Benefactors: Financial Analysts, Investment Firms, Individual Investors, Short to Mid Term Investors.

KPIs:

- Correlations between stock prices and market sentiments.
- Identify relevant stock features for accurate stock price/trend predictions
- Predictions accuracy of future stocks prices.

Data Gathering

Stock Data

- Yahoo Finance
- Stocks: Top 5 Tech stocks(20% S & P valuation)
 - ➤ Google (GOOG)
 - Apple (APPL)
 - Microsoft (MSFT)
 - NVidia (NVDA)
 - Amazon (AMZN)

Stock News Data

- Reddit
- Kaggle
- ❖ BBC News
- Stocks API

Global News Data

- Google News (web scraping)
- ❖ Kaggle

Data Collected from 2011 - 2024 (present)

Modelling Pipeline

Historical Stock Data

Stock News **Used VADER** Sentiment

Global News Sentiments

Compute different stock metrics to find the best features and target variables

Predictions

Performed Portfolio Optimization

(with custom lexicon)

Features Engineered

- Sentiment scores for stock and global news using VADER and our custom lexicon.
- Other stock features:

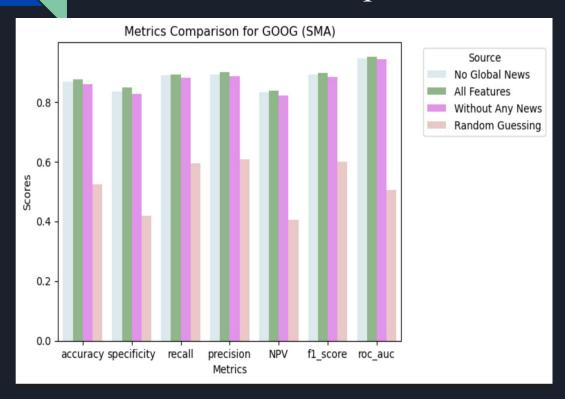
$$RPM = \frac{\text{Closing Price}}{\text{SMA}}$$

- \diamond Trend_N = Number of days the Closing Price went up in the past N days
- $\bullet \quad \text{Log Returns} = \log \left(\frac{\text{Closing Price}}{\text{Yesterday's Closing Price}} \right)$
- \bullet Volatility = std(Log Returns in the past N days)
- ❖ Volume Traded

Target Variables to be Predicted

- Tomorrow's Closing Price
- Tomorrow's SMA
- $\bullet \quad \text{Binary Target}_{\text{Closing Price}} = \begin{cases} 1 & \text{if Tomorrow's Closing Price} > \text{Today's Closing Price} \\ 0 & \text{otherwise}. \end{cases}$ $\bullet \quad \text{Binary Target}_{\text{SMA}} = \begin{cases} 1 & \text{if Tomorrow's SMA} > \text{Today's SMA} \\ 0 & \text{otherwise}. \end{cases}$
- Percentage Difference of Tomorrow's Closing Price and Today's Closing Price

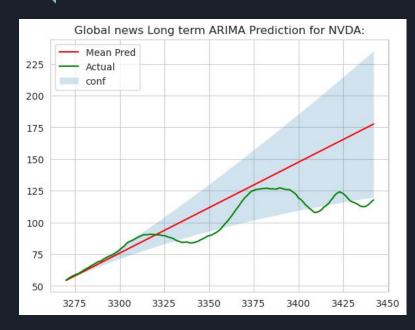
Modeling Strategy


Regression Models

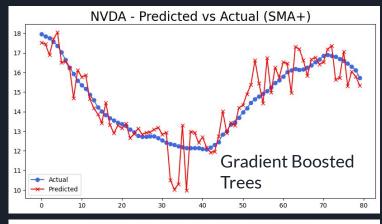
- Predicts Stock Prices
- Baseline: ARIMAX (Regression) and Random Baseline
- Linear Regression
- K-Nearest Neighbours
- ADA Gradient
- > Random Forest
- Gradient Boosted Trees
- > XGBoost

Classification

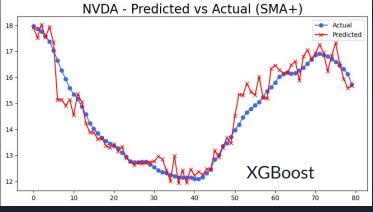
- > Predicts Growth or Trends
- Logistic Regression
- > ADA Gradient
- Random Forest
- Gradient Boosted Trees
- > XGBoost


Do global news and stock news affect stock price predictions?

News data boosts model performance across all metrics, even with global news sentiment.


Prediction Results

ARIMAX (Baseline Predictions)



SMA Prediction

Time (days)

SMA Prediction

Time (days)

Portfolio Optimization

Feedback on day d+1

Import Metrics:

- Model Accuracy
- MSEs
- Predicted Price (P_{d+1})
- Actual Price (S_{d+1})
- Predicted Probabilities $Prob^{d+1}_{up}$ and $Prob^{d+1}_{down}$

Trading Strategy:

- Buy k stocks if: $Prob^{d+1}_{up}$ > $Threshold_{up}$
- Sell *k* stocks if:

$$Prob^{d+1}_{down} < Threshold_{down}$$

Hold otherwise

Update cash and positions on day *d*

Portfolio Returns:

$$Returns_{d+1} = Cash_{d+1} + k_d S_{d+1}$$

$$k = k_0 \left(\frac{\text{Accuracy}_{\text{SMA}}}{\sqrt{\text{MSE}_{\text{SMA}} + \text{MSE}_{\text{P}}}} \right) |\text{SMA}_{d+1} - P_{d+1}|$$

Future Directions

- Extend the methodology to other S&P 500 stocks and sectors.
- Explore applications for risk assessment and ETF investment strategies.
- Develop advanced models using deep neural networks (DNNs).
- Improve the portfolio strategy by introducing a robust risk management strategy

Thank You