AntiBERTotics

Scott Auerbach, Craig Corsi, Hatice Mutlu, Samuel Ogunfuye

The Erdős Institute Deep Learning Boot Camp

Goals

• Construct a model based on structural correlations that can predict whether or not known pathogens are resistant to an antibiotic

• Combine optimized large language models intended for small-molecule drugs with models that parse DNA and other genetic information

KPIs

- Accuracy = (# True Positives + # True Negatives) / (# Predictions)
- F1 Score = 2 * Precision * Recall / (Precision + Recall)
 - Precision = # True Positives / (# True Positives + # False Positives)
 - Recall = # True Positives / (# True Positives + # False Negatives)

Stakeholders

- Pre-clinical genetics research teams
- Clinical research teams
- Pharmaceutical companies and medical centers (and their clients)

Data

- Public data from NIH's National Library of Medicine
 - Genetic sequence data from NCBI (National Center for Biotechnology Information)'s Pathogen Detection project

Ex. atcgatctcgacatatacatatacca

- Antibiotic structural data (SMILES) from PubChem
 - Ex. c1(c(N2c(s1)c(c2=0)Nc(=0)c(c3=cc=cc=c3)N)c(=0)0)cc
- Three types of DNA sequences:
 - AMR (antimicrobial resistance)
 - VIRULENCE
 - STRESS

• Our focus for this project: Escherichia coli and Salmonella enterica

Data Preprocessing

- Accessed sequence data through MicroBIGG-E (Microbial Browser for Genetic and Genomic Elements)
 - Fetched full sequence data for each start/stop using Bio.Entrez
- Augmented sequence data with k-mer shifts and random mutations
- Mapped 'Class' labels in each row to SMILES
- Small random sample due to computational limits

Models and Training

- Initial model: classify sequences of type AMR (DNABERT)
 - Pretrained BERT model (Bidirectional Encoded Representations of Transformers)
 - Labels encoded with One Hot Encoding
 - DNA sequences embedded using DNABERT's tokenizer
- Expanded model (DNABERT and ChemBERTa)
 - Sequence embeddings concatenated with SMILES and encoded label tensors
 - SMILES embedded using ChemBERTa, with raw embeddings converted to logits
 - Labels encoded using sklearn's LabelEncoder
 - Two fully connected layers with sigmoid activation

Results

	Accuracy (DNABERT)	F1 Score (DNABERT)	Accuracy (DNABERT + ChemBERTa)	F1 Score (DNABERT + ChemBERTa)
E. coli (4,500 test samples)	54.6%	0.39	53.8%	0.21
Salmonella enterica (1,500 test samples)	79.3%	0.70	81.4%	0.49

Future Directions

- Refine hyper-parameters and increase accuracy statistics
- Resolve RAM limitations and train on a greater subset of the data
- Develop an application that can take the SMILES input of a given antibiotic and then predict the likelihood of generating resistance for multiple common microbes (including but not limited to *E. coli, Salmonella, Listeria*)

Acknowledgements

We would like to thank everyone at the Erdős Institute for this opportunity.

Special thanks to our instructor, Lindsay Warrenburg, and our TA, Marcos Ortiz. THANK YOU!!!