
AntiBERTotics
Scott Auerbach, Craig Corsi, Hatice Mutlu, Samuel Ogunfuye

The Erdős Institute
Deep Learning Boot Camp



● Construct a model based on structural correlations that can predict 

whether or not known pathogens are resistant to an antibiotic

● Combine optimized large language models intended for small-molecule 

drugs with models that parse DNA and other genetic information

Goals



KPIs
● Accuracy  =  (# True Positives + # True Negatives) / (# Predictions)
● F1 Score  =  2 * Precision * Recall / (Precision + Recall)

Precision  =  # True Positives / (# True Positives + # False Positives)
Recall  =  # True Positives / (# True Positives + # False Negatives)

Stakeholders
● Pre-clinical genetics research teams
● Clinical research teams
● Pharmaceutical companies and medical centers (and their clients)



Data

● Public data from NIH’s National Library of Medicine
○ Genetic sequence data from NCBI (National Center for 

Biotechnology Information)'s Pathogen Detection project 
■ Ex. atcgatctcgacatatacatatacca

○ Antibiotic structural data (SMILES) from PubChem 
■ Ex. C1(C(N2C(S1)C(C2=O)NC(=O)C(C3=CC=CC=C3)N)C(=O)O)CC

● Three types of DNA sequences:
○ AMR (antimicrobial resistance)
○ VIRULENCE
○ STRESS

● Our focus for this project: Escherichia coli and Salmonella enterica



Data Preprocessing
● Accessed sequence data through MicroBIGG-E (Microbial Browser for 

Genetic and Genomic Elements)

○ Fetched full sequence data for each start/stop using Bio.Entrez

● Augmented sequence data with k-mer shifts and random mutations

● Mapped ‘Class’ labels in each row to SMILES

● Small random sample due to computational limits



Models and Training
● Initial model: classify sequences of type AMR (DNABERT)

○ Pretrained BERT model (Bidirectional Encoded Representations of Transformers)
○ Labels encoded with One Hot Encoding
○ DNA sequences embedded using DNABERT’s tokenizer

● Expanded model (DNABERT and ChemBERTa)
○ Sequence embeddings concatenated with SMILES and encoded label tensors
○ SMILES embedded using ChemBERTa, with raw embeddings converted to logits
○ Labels encoded using sklearn’s LabelEncoder
○ Two fully connected layers with sigmoid activation



Results
Accuracy

(DNABERT)
F1 Score

(DNABERT)
Accuracy

(DNABERT + 
ChemBERTa)

F1 Score
(DNABERT + 
ChemBERTa)

E. coli
(4,500 test samples)

54.6% 0.39 53.8% 0.21

Salmonella enterica 
(1,500 test samples)

79.3% 0.70 81.4% 0.49



Future Directions
● Refine hyper-parameters and increase accuracy statistics

● Resolve RAM limitations and train on a greater subset of the data

● Develop an application that can take the SMILES input of a given 
antibiotic and then predict the likelihood of generating resistance 
for multiple common microbes (including but not limited to 
E. coli, Salmonella, Listeria)
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