

Project Leonardo: Using Image Recognition to Find Similar Art

Erdős Data Science Bootcamp Fall 2024

Team Members: Greyson Meyer, Sun Lee, Dawson Kinsman, Oulin Yu, Botan Cevik

GitHub Link: GitHub Repository

https://github.com/BotanCevik2/Project-Leonardo

Overview of Project Leonardo

● Objective:

To develop a recommendation system that identifies and suggests visually similar paintings based on color
and composition analysis.

● Motivation:

– Assist art curators, scholars, and art enthusiasts in finding visually similar artwork.

– Create a new way of exploring online art databases using input images rather than text prompts.

● Approach:

– Leveraging k-means clustering for color and composition features to recommend and visualize matches.

 Key Objectives

● Extract and store meaningful visual features (color and composition) from a large dataset of images.

● Use k-means clustering to analyze dominant colors and structural features (contours and shapes).

● Recommend visually similar images based on extracted features and visualize top matches.

● Assess the clustering performance using metrics like silhouette scores.

Dataset

● Source:

• OmniArt Dataset (Restricted Version)

● Contents:

• Over 15 online artwork collections and user-generated art.

● Focus:

• Paintings and painting-adjacent entries.

Data Processing Workflow

● Cleaning:

● Removed missing artist names, broken URLs, and irrelevant
categories.

● Image Preparation:

● Downloaded and resized images to consistent dimensions
(e.g., 200x200 pixels).

● Storage:

● Organized cleaned dataset into Parquet files for efficient
retrieval and analysis.

Feature Extraction with K-Means

● Color Analysis:

● Clustering pixel values to identify dominant colors.

● Composition Analysis:

● Using contours and shapes to determine spatial layout and structural patterns.

● Performance Metric:

● Silhouette scores to validate clustering quality.

Color Clustering Examples

Example of Canny Edge Detection

Composition clustering examples

 Recommendation System

● Input Image → Extracted Features (Color & Composition).

● Compare extracted features with dataset images.

● Output: Recommended images based on color, composition, and overall similarity.

Performance Evaluation

● Metric:

● Silhouette score to measure clustering quality.

● Observations:

● Optimum number of clusters (k) identified using silhouette analysis.

● Recommendations align closely with input features.

● We worked on randomly chosen chunks of image data to evaluate the optimal number of clusters
for both color and composition features.

● By calculating the average silhouette score for each chunk, we assessed how well the images
were clustered for different values of K.

● Our analysis revealed that the optimal number of clusters for color was 2 and for composition was
4, as it consistently yielded the highest silhouette scores across the chunks.

● Here is the graph of average silhouette scores for color:

Here is the graph of average Silhouette Score for Composition:

Concern on the optimal number of cluster for Color:

● Oversimplification:

• If you were to choose k=2, it would imply that you're grouping all the color data into
just two major clusters. This might not fully capture the richness and diversity of colors
in the artwork.

● Loss of Detail:

• Choosing fewer clusters may ignore important differences in the image's color
distribution. For example, a painting might have multiple distinct color regions (e.g.,
light and dark shades, or complementary color schemes), and k=2 might not capture
the full complexity of these color variations. With only two clusters, nuances between
these regions might be lost, making the clustering too basic for accurate comparisons.

Results

● Examples :

Future Iterations

● Integrate deep learning for advanced feature extraction (e.g., style, texture).

● Adaptive clustering for varying complexity.

● Interactive user interface for personalized recommendations.

Streamlit App

Why didn’t we use Gabor Filter?
● In the context of our image similarity model, we decided not to apply Gabor filters for feature

extraction. While Gabor filters are powerful for texture analysis and can capture frequency and
orientation information, they tend to remove important structural and color details in an image.
Specifically, Gabor filters perform well in detecting local features such as edges and textures, but
they may discard crucial high-level semantic information, which is important for accurately
comparing images based on composition and color distribution.

● For our image similarity model, which focuses on identifying more global features like color
clusters and overall composition, using Gabor filters would have likely distorted or diminished
essential details that are necessary for a more accurate similarity assessment.

Acknowledgements

 We would like to thank:

 @Erdos Institute

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

