Erdos Institute Winter 2024

April 26, 2024

Predicting Stock Prices after Earnings Calls

Team: Yearning for Earnings **Members:** Shabarish Chenakkod, Jasper Liang, Tejaswi Tripathi, Shravan Patankar

Overview

- Earnings calls often lead to **volatility in stock prices.**
- We want to create machine learning models that predict percentage changes in stock prices surrounding earnings calls based on
 - sentiment analysis of earnings call transcripts
 - earnings and revenue data
 - stock prices and volume before the earnings
- Detect factors which influence stock price the most

NVDA earnings call working in favor of its stock price

META earnings call negatively impacts tech sector

Tech-heavy Nasdaq 100 Slumps Thursday Meta losses weighed on the index

Datasets

We selected **98 companies** from S&P 500 with a **6-year** earning period. In total we have **over 2000** data points. Sample companies include:

Data were gathered using Seeking Alpha API from <u>rapidapi.com</u> and Yahoo Finance.

Earnings Call Transcripts

Web Scraping using Seeking Alpha API obtained from Rapid API Seeking Alpha^α

Earnings and Revenue Data

Web Scraping using Rapid API

- Earnings per share (EPS)
- 🞗 Rapid
- 2. Earning and revenue surprises

Stock Prices and Volume

Yahoo finance python package

1. Stock prices several time points before and after earnings

yahoo!

2. Average volume 50 days before each earning

Data Processing

- Instead of looking at **absolute changes**, we look at **percentage changes**.
- Key features include: average_volume_50_days,
 % Change Revenue, % Change EPS Normalized and several sentiment scores:
 - Financial_performance_score
 - Market_position_score
 - Strategic_direction_score
 - Operational_aspects_score
 - Financial_indicators_score
 - Risks_challenges_score
 - Economic_factors_score
- Target Feature: **perc_change_next_prev** (percentage of stock price changes next day to previous day of earnings call)

We label the data using Symbol + Year + Quarter

> AAPL2019Q1 AAPL2020Q1 AAPL2021Q1 AAPL2022Q1 AAPL2023Q1 XOM2019Q3 XOM2020Q3 XOM2021Q3 XOM2022Q3 XOM2023Q3

Exploratory Data Analysis (EDA)

Scatter plot of percent change in **Revenue** vs **Stock Price** on earnings

Histogram of **percentage change in stock price** after earnings

Extracting Features from Earning Call Transcripts

Sentiment Scores

1. Organized keywords into seven categories.

Example:

financial_performance_keywords = {revenue, profit, loss, earnings, sales, expense, cost,....}

market_position_keywords = {market, share, grow, growth, decline, competitive, demand,....}

risks_challenges_keywords = {risk, challenge, uncertainty, regulation, legal, compliance, issue,....}

2. For each category, we extracted sentences (with context) and computed average sentiment scores using VADER.

Models

- **Baseline Model:** Predicts no change from previous day.
- Linear Regression

- **XGBoost** (parameters tuned using GridSearchCV)
- Neural Network

- Logistic Regression
- Neural Network (Classification)

Linear Regression

Remark:

Technically, we should only be doing a time based split. However, we found that the performance is similar by doing that.

Linear Regression

Feature Importance

Feature Importance for linear regression averaged over 1000 runs

XGBoost

Fine tune parameters using GridSearchCV

Run 1000 times

Record Actual and Predicted Values

Parameters tuned:

- alpha (L1 regularization)
- lambda (L2 regularization)
- n_estimators (number of trees used)
- max_depth of a tree
- learning_rate

Results	The numbers are means of multiple runs	
	MSE	Correlation
Baseline	31.16	N/A
Linear Regression	24.16	0.18
XGBoost	23.85	0.22
Neural Network	35.62	0.31

Results Visualization

Scatter plot Predicted percent price changes vs Actual

Both are based on **Neural Network**

Histogram of **Residuals**

A Simple Trading Strategy

Results:

- We obtain **returns of 4.8%** over trades around 4 earnings call days.
- In comparison, blindly buying the stock on the day of earnings call and selling it the next day gives **a return of 2%.**

Future Research

Acknowledgement

Thanks to Roman Holowinsky, Steven Gubkin, Alec Clott and the Erdös Institute for their support throughout the Winter 2024 boot camp.

Thanks to Dyas Utomo and Andrew McMillan for the mentorship.

Special thanks to Sridhar Venkatesh for his help during the beginning stage of the project.

