Climate-Based Forecasting of Dengue Epidemic Months: A Case Study of Bangladesh

Haridas Kumar Das & Abdullah Al Helal

A Data Science Bootcamp project Erdős Institute's May-Summer 2024 Cohort!

Question: How can we develop machine learning algorithms to analyze climate and

epidemiological data in order to forecast epidemic months of diseases, for example, dengue?

Goal: We develop machine learning algorithms to analyze climate and epidemiological data in order to forecast dengue epidemic months, focusing on the analysis of Bangladesh.

Use: Policymakers can use our model to analyze or predict epidemic diseases in the decision-making process.

Data: Climate Data, Population Data, and Epidemiological Data

THE ERDŐS INSTITUTE Revolutionary Collaborations in Academia and Industry

Dataset Statistics

Number of Variables	19	
Number of Rows	192	
Missing Cells	0	
Missing Cells (%)	0.0%	
Duplicate Rows	0	
Duplicate Rows (%)	0.0%	
Total Size in Memory	19.5 KB	
Average Row Size in Memory	104.0 B	
Variable Types	Numerical: 18 Categorical: 1	

Dataset Insignts

precipitation and rain have similar distributions	Similar
<pre>soil_temperature_0_to_7cm) and (soil_temperature_7_to_28cm) have similar distributions</pre>	Similar Distribution
<pre>soil_moisture_0_to_7cm and soil_moisture_7_to_28cm have similar distributions</pre>	Similar Distribution
<pre>soil_moisture_7_to_28cm) and [soil_moisture_28_to_100cm] have similar distributions</pre>	Similar Distribution
case is skewed	Skewed
temperature_2m) is skewed	Skewed
<pre>dew_point_2m is skewed</pre>	Skewed
precipitation is skewed	Skewed
rain is skewed	Skewed
<pre>soil_temperature_0_to_7cm) is skewed</pre>	Skewed
epidemic has constant length 1 Constant Length	
case has 36 (18.75%) zeros Zeros	

ML Model building

- 1. K-Nearest Neighbors (KNN)
- 2. Naive Bayes
- 3. Decision Tree
- 4. Logistic Regression
- 5. Random Forest
- 6. Support Vector Machine (SVM)
- 7. Neural Network
- 8. Bagging Decision Tree
- 9. Boosting Decision Tree
- 10. Voting Classifier

ML Model building

ML model name	Test accuracy	Pred. accuracy	Comments
K-Nearest Neighbors (KNN)	0.95	0.0	Overfitting
Naive Bayes	0.87	1.0	Best model performance
Decision Tree	0.87	0.80	Performed okay
Logistic Regression	0.87	0.80	Performed okay
Random Forest	0.87	0.80	Performed okay
Support Vector Machine (SVM)	1.0	0.0	Overfitting
Neural Network	1.0	1.0	Best model performance
Bagging Decision Tree	0.87	0.80	Performed okay
Boosting Decision Tree	0.87	0.80	Performed okay
Voting Classifier	0.87	1.0	Best model performance

ML model name	Test accuracy	Pred. accuracy	Comments
K-Nearest Neighbors (KNN)	0.95	0.0	Overfitting
Naive Bayes	0.87	1.0	Best model performance
Decision Tree	0.87	0.80	Performed okay
Logistic Regression	0.87	0.80	Performed okay
Random Forest	0.87	0.80	Performed okay
Support Vector Machine (SVM)	1.0	0.0	Overfitting
Neural Network	1.0	1.0	Best model performance
Bagging Decision Tree	0.87	0.80	Performed okay
Boosting Decision Tree	0.87	0.80	Performed okay
Voting Classifier	0.87	1.0	Best model performance

ML model name	Test accuracy	Pred. accuracy	Comments
K-Nearest Neighbors (KNN)	0.95	0.0	Overfitting
Naive Bayes	0.87	1.0	Best model performance
Decision Tree	0.87	0.80	Performed okay
Logistic Regression	0.87	0.80	Performed okay
Random Forest	0.87	0.80	Performed okay
Support Vector Machine (SVM)	1.0	0.0	Overfitting
Neural Network	1.0	1.0	Best model performance
Bagging Decision Tree	0.87	0.80	Performed okay
Boosting Decision Tree	0.87	0.80	Performed okay
Voting Classifier	0.87	1.0	Best model performance

ML model name	Test accuracy	Pred. accuracy	Comments
K-Nearest Neighbors (KNN)	0.95	0.0	Overfitting
Naive Bayes	0.87	1.0	Best model performance
Decision Tree	0.87	0.80	Performed okay
Logistic Regression	0.87	0.80	Performed okay
Random Forest	0.87	0.80	Performed okay
Support Vector Machine (SVM)	1.0	0.0	Overfitting
Neural Network	1.0	1.0	Best model performance
Bagging Decision Tree	0.87	0.80	Performed okay
Boosting Decision Tree	0.87	0.80	Performed okay
Voting Classifier	0.87	1.0	Best model performance

ML model name	Test accuracy	Pred. accuracy	Comments
K-Nearest Neighbors (KNN)	0.95	0.0	Overfitting
Naive Bayes	0.87	1.0	Best model performance
Decision Tree	0.87	0.80	Performed okay
Logistic Regression	0.87	0.80	Performed okay
Random Forest	0.87	0.80	Performed okay
Support Vector Machine (SVM)	1.0	0.0	Overfitting
Neural Network	1.0	1.0	Best model performance
Bagging Decision Tree	0.87	0.80	Performed okay
Boosting Decision Tree	0.87	0.80	Performed okay
Voting Classifier	0.87	1.0	Best model performance

ML model name	Test accuracy	Pred. accuracy	Comments
K-Nearest Neighbors (KNN)	0.95	0.0	Overfitting
Naive Bayes	0.87	1.0	Best model performance
Decision Tree	0.87	0.80	Performed okay
Logistic Regression	0.87	0.80	Performed okay
Random Forest	0.87	0.80	Performed okay
Support Vector Machine (SVM)	1.0	0.0	Overfitting
Neural Network	1.0	1.0	Best model performance
Bagging Decision Tree	0.87	0.80	Performed okay
Boosting Decision Tree	0.87	0.80	Performed okay
Voting Classifier	0.87	1.0	Best model performance

ML model name	Test accuracy	Pred. accuracy	Comments
K-Nearest Neighbors (KNN)	0.95	0.0	Overfitting
Naive Bayes	0.87	1.0	Best model performance
Decision Tree	0.87	0.80	Performed okay
Logistic Regression	0.87	0.80	Performed okay
Random Forest	0.87	0.80	Performed okay
Support Vector Machine (SVM)	1.0	0.0	Overfitting
Neural Network	1.0	1.0	Best model performance
Bagging Decision Tree	0.87	0.80	Performed okay
Boosting Decision Tree	0.87	0.80	Performed okay
Voting Classifier	0.87	1.0	Best model performance

ML model name	Test accuracy	Pred. accuracy	Comments
K-Nearest Neighbors (KNN)	0.95	0.0	Overfitting
Naive Bayes	0.87	1.0	Best model performance
Decision Tree	0.87	0.80	Performed okay
Logistic Regression	0.87	0.80	Performed okay
Random Forest	0.87	0.80	Performed okay
Support Vector Machine (SVM)	1.0	0.0	Overfitting
Neural Network	1.0	1.0	Best model performance
Bagging Decision Tree	0.87	0.80	Performed okay
Boosting Decision Tree	0.87	0.80	Performed okay
Voting Classifier	0.87	1.0	Best model performance

ML model name	Test accuracy	Pred. accuracy	Comments
K-Nearest Neighbors (KNN)	0.95	0.0	Overfitting
Naive Bayes	0.87	1.0	Best model performance
Decision Tree	0.87	0.80	Performed okay
Logistic Regression	0.87	0.80	Performed okay
Random Forest	0.87	0.80	Performed okay
Support Vector Machine (SVM)	1.0	0.0	Overfitting
Neural Network	1.0	1.0	Best model performance
Bagging Decision Tree	0.87	0.80	Performed okay
Boosting Decision Tree	0.87	0.80	Performed okay
Voting Classifier	0.87	1.0	Best model performance

Model prediction

Modeling limitation

• One limitation in modeling is the potential for the model to overlook complex relationships in the climate data, leading to less accurate predictions in the machine learning models.

Conclusion and future directions

- Classification can be improved by using a bigger dataset.
- Future work will involve implementing sophisticated probabilistic time series forecasting algorithms.

Thank you for joining!

haridas.das@okstate.eduahelal@okstate.eduDepartment of MathematicsDepartment of MathematicsOklahoma State UniversityOklahoma State University

