Climate-Based Forecasting of Dengue Dynamics

Abdullah Al Helal, Haridas Kumar Das, Chun-hao Chen, Feng Zhu

A Deep Learning Bootcamp project Erdős Institute's May-Summer 2024 Cohort

Question: How can we use climate, epidemiological, and other data to forecast the dynamics of infectious diseases, e.g. dengue?

Goal: We use deep learning algorithms to analyze climate, epidemiological, and social data in order to forecast dengue dynamics, focusing on the case of Bangladesh.

Use: Policymakers can use our model to analyze or predict dengue dynamics, in order to better allocate resources and implement more effective public health measures.

Data: Climate Data, Epidemiological Data and Google Trends Data

[<u>+</u>]	<pre><class 'pandas.core.frame.dataframe'=""> RangeIndex: 192 entries, 0 to 191 Data columns (total 6 columns):</class></pre>						
	#	Column	Non-Null Count	Dtype			
	0	date	192 non-null	object			
	1	temp 2m mean	192 non-null	float64			
	2	appar temp mean	192 non-null	float64			
	3	rain_sum	192 non-null	float64			
	4	goog trends	192 non-null	int64			
	5	case	192 non-null	int64			

[]] df.corr()									
₹		date	temp_2m_mean	appar_temp_mean	rain_sum	goog_trends	case			
	date	1.000000	0.007473	0.031027	0.031935	0.377799	0.356004			
	temp_2m_mean	0.007473	1.000000	0.992262	0.845130	0.315251	0.278008			
	appar_temp_mean	0.031027	0.992262	1.000000	0.880395	0.316291	0.275526			
	rain_sum	0.031935	0.845130	0.880395	1.000000	0.216992	0.180182			
	goog_trends	0.377799	0.315251	0.316291	0.216992	1.000000	0.783459			
	case	0.356004	0.278008	0.275526	0.180182	0.783459	1.000000			

dew_point_2m (degre C)

Some aspects of model training

- Data was scaled before training for better performance
- For deep learning algorithms, hyperparameter optimization was done using a grid search or a Bayesian method (using the Optuna library)

Model building

- 1. CNN
- 2. LSTM
- 3. GRU
- 4. Random Forest
- 5. XGBoost

Statistical Model: ARIMA

Ensemble model

Model Predictions Using Ensemble Approach

Consider that we have RMSE scores (R_i) from M different modes. We define the penalty for each model as: $\hat{w}_i = \frac{1}{R_i}$.

We normalize these penalties to obtain the final weights w_i , which are calculated as $w_i = \frac{\hat{w}_i}{\sum_{i=1}^M \hat{w}_i}$.

Note that the sum

$$\sum_{i=1}^{M} w_i = \sum_{i=1}^{M} \frac{\hat{w}_i}{\sum_{j=1}^{M} \hat{w}_j} = \frac{\sum_{i=1}^{M} \hat{w}_i}{\sum_{j=1}^{M} \hat{w}_j} = \frac{\sum_{i=1}^{M} \hat{w}_i}{\sum_{i=1}^{M} \hat{w}_i} = 1$$

\subsection*{2. Compute Ensemble Predictions}

To compute the final ensemble prediction:

Let y_i represent the prediction vector from the *i*-th model. The final ensemble prediction vector y_{ensemble} is calculated as: $y_{\text{ensemble}} = \sum_{i=1}^{M} w_i \mathbf{y}_i.$

Ensemble model: Forecasting

Ensemble model: Forecasting

Model performance

Weights Assigned to Each Model

- Six deep learning and statistical models were deployed to forecast dengue dynamics in Bangladesh.
- Difficult to forecast the magnitude of the peak, but more reasonable to forecast when the peak will be and general trends
- Two models—GRU and CNN—reasonably forecast dengue cases for 2024, in terms of both test error and visual trend of forecasting in the unknown future.

Future directions

- It remains to be explored if separating seasonal and trend components in the data improves model performance.
- Forecasting can be improved by using a bigger dataset.
- Future work will involve implementing hybrid deep learning models and sophisticated probabilistic time series forecasting algorithms.

Thank you for joining!

<u>ahelal@okstate.edu</u> Department of Mathematics Oklahoma State University haridas.das@okstate.edu Department of Mathematics Oklahoma State University

<u>chen4co@mail.uc.edu</u> MS in Information Systems University of Cincinnati

fzhu52@wisc.edu

Department of Mathematics University of Wisconsin–Madison