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Goals

e |dentify topics from a collection of articles
e Assign each article one or more topics, weighted by relevance

Applications:

e Study topictrends
e Build arecommendation engine
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Overview
The Archive API returns an array of NYT articles for a given month, going back to 1851. Its
PATHS response fields are the same as the Article Search API. The Archive API is very useful if you
- want to build your own database of NYT article metadata. You simply pass the API the year
/lyeart/{month}json G and month and it returns a JSON object with all articles for that month. The API response
size can be large (~20mb) and isn't meant to be called from the browser.
COMPONENTS
Schemas /{year}/{month}.json
Article
Byline Example Call
Headline
https://api.nytimes.com/svc/archive/v1/2024/1.json?api-key=yourkey
Keyword
Multimedia Working with the Data
Person
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import pandas as pd
df = pd.read_csv('data/nyt_metadata.csv')
df.head(10)
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import pandas as pd
df = pd.read_csv('data/nyt_metadata.csv')
df.head(10)
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df[['abstract’,
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'lead_paragraph']].head(10)
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Economic hardship, climate change, political i...
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Data Cleaning

e Abstracts were converted to lowercase
e Punctuation was stripped
e Acronyms were keptin
o Ex:U.S.->us
e Words in abstracts were put into lists
e Common phrases were kept together
o Ex:climate_change
e Dateskeptin



Cleaned Data

df = pd.read_csv('data/nyt_metadata_cleaned
df[['abstract', 'lead_paragraph']].head(10)
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Data Exploration

Word counts in abstract
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Latent Dirichlet Allocation (LDA) Model

e LDA takesin acorpus of documents and generates representative topics
e Our corpus consists of NYT abstracts
e Foreachtopic, the LDA model generates the top keywords
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Optimal
Topics

# Define Search Param
search params = {'n_components': [10, 15, 20, 25, 30,35,40], 'learning decay': [.5, .7, .91}

# Init the Model
lda = LatentDirichletAllocation()

# Init Grid Search Class
model = GridSearchCV(lda, param grid=search_ params)

# Do the Grid Search
model.fit(X_count)

GridSearchCV(estimator=LatentDirichletAllocation(), I
param_grid={'learning_decay': [0.5, 0.7, 0.9],
'n_components': [10, 15, 20, 25, 30, 35, 401})
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

# Best Model
best_lda_model = model.best_estimator_

# Model Parameters
print("Best Model's Params:

, model.best_params_)

# Log Likelihood Score
print("Best Log Likelihood Score:

, model.best score_ )

# Perplexity
print("Model Perplexity:

"

, best_lda_model.perplexity(X_count))

Best Model's Params: {'learning decay': 0.5, 'n_components': 10}
Best Log Likelihood Score: -87000.10962360006
Model Perplexity: 1624.4050019802207
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Intertopic Distance Map (via multidimensional scaling)
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Overall term frequency
- Estimated term frequency within the selected topic

1. saliency(term w) = frequency(w) * [sum_t p(t | w) * log(p(t | w)/p(t))] for topics t; see Chuang et. al (2012)
2. relevance(term w | topic t) = A * p(w | 1) + (1 - A) * p(w | t}p(w); see Sievert & Shirley (2014)
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I st term freq within the topic

1. saliency(term w) = frequency(w) * [sum_t p(t | w) * log(p(t | w)/p(1))] for topics t; see Chuang et. al (2012)
2. relevance(term w | topic t) = A * p(w | ) + (1 - A} * p(w | t)/p(w); see Sievert & Shirley (2014)
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Recommendation System

e | DA model returns a vector of probabilities for each topic



Recommendation System

ArticleD
Article1
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Article3
Articled
Article5
Article6
Article?
Article8
Article9

TopicO
0.010000
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0.010000
0.030000

0.670000
0.010000
0.230000
0.010000
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Topic3 Topicd
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0.550000 0.010000
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0.010000 0.870000
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Topic8
0.010000
0.160000
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0.700000
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LDA model returns a vector of probabilities for each topic

Topic® dominant_topic

0.350000
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Recommendation System

e | DA model returns a vector of probabilities for each topic

e Cosinesimilarity is the cosine of the angle between the vectors
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Recommendation System

e | DA model returns a vector of probabilities for each topic

e Cosinesimilarity is the cosine of the angle between the vectors

1l 111l

cos(a) =
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Recommendation System

e | DA model returns a vector of probabilities for each topic

e Cosinesimilarity is the cosine of the angle between the vectors

e Recommendation system based on LDA model



BERTopic

e Embeds docs using transformers to
(default is ‘all-MiniLM-L6-v2’ which
outputs 384 dimensional vectors)

e Reduces dimensionality using UMAP
and clusters with HDBSCAN

e Identified over 400 emerging topics
over the course of the past year

e Ollamawas used to give sensible
labels to these topics

Although BERT is typically

Embed used for embedding

Documents documents, any embedding
technique can be used.
Cluster documents
UMAP | |HDBSCAN into semantically
Reduce dimensionality Cluster reduced P
of embeddings embeddings similar clusters
v

Create topic
representations
from clusters

c-TF-IDF
Generate candidates by 9

extracting class-specific
words

MMR

Maximize candidate
relevance




BERTopic

e Supports dynamic topic modeling to
understand the popularity of an
identified topic over time

e Provides built-in search functions to
go from topics to documents that
could be useful for arecommender

Frequency

Topics over Time
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Global Topic Representation
Artificial Intelligence
-~ Chatbots Race: Tech Giants' Own Dangerous Creations
Sam Altman AI Regulation
OpenAl ChatGPT Copyright Dispute




Future Directions

Enhance Model Performance with Hyperparameter Tuning

Include additional data (lead paragraph, keywords etc) into the analysis
Analyze Temporal Trends

Integrate User interaction Data

...and more!
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