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Introduction

Our goals for this project were to test different occupancy modeling strategies to explore if and how climate change or
forest loss has affected bird populations in the Amazonas region of Brazil over the time period of 2012 — 2021, and
subsequently evaluate which models performed the best. We tested this for two species — a generalist species, Black
vulture (Coragyps atratus) and a forest specialist, Screaming piha (Lipaugus vociferans). We used three different modeling
approaches, two standard machine learning classification models — balanced random forest and binary logistic regression —
and one modern occupancy modeling approach using the R package spOccupancy.

Data Collection

1. Bird Detection Data
We obtained a dataset containing all eBird observations within Brazil directly from eBird.' The data are split into
an observation dataset, containing observations of individual bird species, and a checklist dataset, containing
records of ‘checklists’ - observation runs where several different species
may have been observed. Generating a usable csv file for analysis and
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Longitude defined a grid of sites which could be used to group observations, and
selected a set of four of these sites with data between the years of
2012-2021 on which to build and test models. We further restricted our analysis to a collection of two particular
species - a generalist, Black vulture (Coragyps atratus) and a forest specialist, Screaming piha (Lipaugus
vociferans).

2. Climate Data
Monthly weather data (temperature and precipitation) for the period 2012-2021 are obtained from WorldClim
Historical Monthly Weather Data. These data are downscaled from CRU-TS-4.06 by the Climatic Research Unit,
University of East Anglia, using WorldClim 2.1 for bias correction®. The features available are average minimum
temperature (°C), average maximum temperature (°C) and total precipitation (mm). The spatial resolution we use
is 10 minutes (~340 km?). Each download is a “zip” file containing 120 GeoTiff (.tif) files, for each month of the
year (January is 1; December is 12), for a 10 year period.

3. Tree cover and tree cover loss Data
To analyze how climate change, especially increasing temperature and human-made deforestation, affects bird
species occupancy we obtained the vegetation coverage data via the Terra Moderate Resolution Imaging
Spectroradiometer (MODIS) Vegetation Indices (MOD13Q1) Version 6.1, generated every 16 days at 250 meter
(m) spatial resolution from the USGS.? For our analysis, we calculated the annual mean EVI for all sites in the

' Cornell Lab of Ornithology https://ebird.org/home

2 CRU-TS 4.06 (Harris et al., 2020) downscaled with WorldClim 2.1 (Fick and Hijmans, 2017) https://www.worldclim.org/data/monthlywth.html
8 MOD13Q1, USGS: https://Ipdaac.usgs.gov/products/mod13g1v061/
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Amazonas state. The tree cover loss data was obtained from Global Forest watch.* This dataset shows the
dominant driver of tree cover loss from 2001-2023 for 27 states in Brazil using the following five categories:

e Commodity-driven deforestation: Large-scale deforestation linked primarily to commercial agricultural expansion.
Shifting agriculture: Temporary loss or permanent deforestation due to small- and medium-scale agriculture.

e Forestry: Temporary loss from plantation and natural forest harvesting, with some deforestation of primary
forests.

e Wildfire: Temporary loss, does not include fire clearing for agriculture.

e Urbanization: Deforestation for expansion of urban centers
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With all our data collected and synthesized, we employ our occupancy covariates (the environmental features) and
detection covariates (features from eBird related to human observation efforts, e.g. hours spent looking for birds) to model
species occupancy, a binary variable denoting whether or not a species occupies a particular site.

Standard Machine Learning Approaches

Since we are interested in modeling the effects of environmental change on species occupancy over time, we need to
account for the time-ordered nature of our occupancy covariates

(precipitation, temperature, EVI, and tree cover loss). Note we are
not interested in the change of detection covariates (e.g. how many
hours an observer spent looking for birds) over time. Since we still
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features for our occupancy covariates. These shifted features allow
us to use the value of an occupancy covariate at time step t-1 to
predict species occupancy at time step t. We use these shifted occupancy covariates along with the detection covariates in
the following two models.

We take a single-species, single-site approach to model selection - selecting a model with data from one of our two species
(Screaming piha) at one of our four sites. We later examine how the model generalizes to the other species and sites.

1. Binary Logistic Regression with LASSO Regularization (Log Reg)
Our first model is a binary logistic regression (binary because we predict occupancy as True/False). We use
LASSO regularization for feature selection and implement the regularization in the logistic regression model itself

4 Curtis, PG., C.M. Slay, N.L. Harris, A. Tyukavina, and M.C. Hansen. 2018. “Classifying Drivers of Global Forest Loss.” Science. Accessed
through Global Forest Watch on 02/12/2024. www.globalforestwatch.org.
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as well, running a grid search to tune the regularization strength. We also implement a class weight inversely
proportional to class frequency in an effort to accommodate class imbalance between detection and don-detection
(eBird data tends to have many more non-detections than detections).

2. Balanced Random Forest (BRF)
Our second model is a balanced random forest, very similar to the traditional random forest except that it draws a
bootstrap sample from the minority class and samples the same number from the majority class in an effort to
improve performance for a class-imbalanced dataset. We run a cross-validation grid search to tune the
class-balancing hyperparameters class weight and sampling strategy (the ratio of the number of samples drawn
from the minority class after resampling to the number of samples from the majority class), along with other
random forest hyperparameters.

3. Synthetic Minority Over-Sampling Technique (SMOTE)

In addition to the above efforts made to correct for class-imbalance, we also implement SMOTE to generate
additional synthetic data from the minority class. We then re-run the above models, now passing in the
(synthetically) oversampled data. Our SMOTE is conditional, however. If the data already has a ratio of minority
to majority above the SMOTE threshold, we simply reduce to our original logistic regression and balanced
random forest.

Evaluation

We compared our two models and their SMOTE-modified implementations with rolling cross-validation. To strike a

Model Average cross-validated
performance
Macro F1 | Detection F1
Uniform Dummy 0.407383 0.184598
Stratified Dummy | 0.473880 0.061573
Log Reg 0.655341 0.409418
BRF 0.643427 0.413207
Log Reg w/ 0.663651 0.423858
SMOTE
BRF w/ SMOTE 0.652909 0.422789

balance between precision and recall for both classes (we are
interested in performing well on both detections and
non-detections in order to draw sound environmental and climate
conclusions), we opt for the macro-averaged F1 score as our main
performance metric. Macro-average is the simple average of the F1
scores for both classes. We also report the F1 score for just the
detection class. This is a useful metric since, with strong class
imbalance, performing well on the detection class is difficult while
performing well on the non-detection class is fairly easy, even for
dummy models. The performance on the detection class then offers
another kind of insight into how our models have improved over
baseline predictions.

We compare model performance to two baseline dummy classifiers.
Both dummies ignore the features, but the uniform dummy makes
random guesses for each class with uniform frequency while the
stratified dummy makes random guesses informed by the relative
frequencies of the classes. The cross-validation scores for the ML

classification models are shown in the accompanying table. Our ML classification models all perform fairly comparably,
but the best, as measured by average cross-validated macro-averaged F1 score, is binary logistic regression with L1
regularization and SMOTE.

Occupancy Modeling with spOccupancy

yi|2z; ~ Bernoulli (p - 2)
z; ~ Bernoulli (¢)

logit (p) = ap + Zaj -A;
J

logit () = Bo + Y _ B; - B
)

with

y; = data at site i

p = detection probability

z; = true occupancy state at site i

1 = occupancy probability

We use spOccupancy” (an R library) to fit single—species
and single—species integrated spatial occupancy models.
We use these models to accommodate imperfect detection
— when the species is present at (near) the site but it wasn’t
detected. The full (basic) model statement is shown to the
left, but note that imperfection detection is accommodated

a; = model parameters relating detection probability and detection covariates A;

B; = model parameters relating occupancy probability and occupancy covariates B;


https://doserlab.com/files/spoccupancy-web/

by the hierarchical structure and by the explicit modeling of the detection probability, p. In this way, occupancy models
help distinguish occupancy probability from detection probability, something our more naive, traditional machine learning
approach cannot do.

Our model is a layered logistic regression where the occupancy and detection random variables have Bernoulli distribution
and conditional Bernoulli distribution respectively. These models are implemented in R using a Markov Chain Monte
Carlo process. For the occupancy logit regression, our covariates are temperature, precipitation, forest cover loss, EVI
(enhanced vegetation index), while for the detection logit regression, our covariates are day of the year, time of the day,
and number of observations.

We first structured the detection non-detection data, the detection covariates, the occupancy covariates, and the coordinate
matrix for the sites into the correct array formats that are needed for the spOccupancy models. We then fitted occupancy
models with both temporal (tPGOcc) and spatial autocorrelation (stPGOcc). The temporal autocorrelation uses AR1 while
the spatial autocorrelation uses the Nearest Neighbour Gaussian Process.

We also implemented posterior predictive checks on these models to evaluate the Bayesian p-value, which measures
proportion of posterior samples of the fit statistic of the model generated data that are greater than the corresponding fit
statistic of the true data, summed across all “grouped” data points. A Bayesian p-value around 0.5 indicates adequate
model fit, while values less than 0.1 or greater than 0.9 suggest our model does not fit the data well.® We also evaluated the
WAIC score 7 (Widely Applicable Information Criterion), where a lower value indicates better model fit.

Occupancy model

Bayesian p value grouped
along sites
(Freeman-Tukey statistic)

Bayesian p value grouped
along replicates
(Freeman-Tukey statistic)

WAIC (Widely Applicable
Information Criterion)

autocorrelation)

tPGOcc (temporal 0.0047 0.7594 3074.40
autocorrelation)
stPGOcc (spatial and temporal 0.0015 0.0016 3074.03

Both the spOccupancy models performed comparably. The Bayesian p-value grouped along sites is not close to 0.5, which
indicates that the model does not adequately represent variance in detection and occurrence probability across sites. See
the notebook “Occupancy_modeling_with_SpOccupancy” for more details.

Results

The evaluation of our binary logistic regression model with L1 regularization

and SMOTE is shown in the table to the right, compared with the baseline
performance. We observe some decrease in performance relative to the
cross validation score, but still reasonable improvement upon the baseline,
particularly for the detection F1 score. The decrease in performance on the
test set may be impacted by the class imbalance in the test set. The trend
of detection frequency by year can be seen in the green line in the plot to
the right. As our data is time-ordered, our test set is composed of the most
recent 20% of the dataset. And because the data are more skewed toward
recency (many more observations in more recent years than past years),
the detection frequency in our test set is significantly lower than the

Model Test set performance

Macro F1 Detection F1
Uniform Dummy 0.335315 0.027682
Stratified Dummy | 0.467841 0.022727
Log Reg w/ 0.566737 0.178571
SMOTE

6 https://doserlab.com/files/spoccupancy-web/articles/modelfitting

7 http://www.stat.columbia.edu/~gelman/research/published/waic_understand3.pdf
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average detection frequency in our training set, which is skewed higher by the trend of greater detection frequency from,
say, 2015-2018.

Relative to our logistic regression model’s performance on the test set for the species and site with which it was selected,
we find no significant decrease in performance when evaluating our
model on the other three sites for Screaming piha, and in some cases
moderate improvement. We find relatively consistent performance when
evaluating on our second species, Black vulture. Compared to our
model’s performance on the test set for the species and site with which it
was selected, only one site for Black vulture shows a markedly decreased
performance. For full details, see the associated notebook
‘ml_classification.’

Detection Frequency by Year for Screaming Piha at Site 69
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Our L1 regularization and occupancy models in spOccupancy gave some
insight into feature importance, with both types of models identifying as
important the detection covariates of effort hours, time of day, and
number of observers. Given that both models employ such different B T W e W
techniques, their agreement on the importance of these features seems

significant. And the fact that these three common features are all

detection covariates might suggest that the impact of environmental and climate features on species occupancy in our
analysis is being washed out by the stronger effects of the features related to human observation efforts.

Conclusions, Shortcomings, and Future Directions

Broadly, we find binary logistic regression with L1 regularization and SMOTE to be our optimal traditional ML
classification technique for site occupancy by Screaming pihas (a forest specialist) near Manaus, Brazil. We find this
model generalizes reasonably well among nearby sites and for another species, the Black vulture (a generalist).

Based on both our L1 regularization and our SpOccupancy models, we find a common set of very important detection
covariates: effort hours, time of day, and number of observers. The fact that both modelling approaches identify
detection covariates as significant might suggest that climate change effects on occupancy and detection are overpowered
by human effort effects in our analysis.

Some limitations and challenges of our modeling approach:

- Sites were clustered in the same region near Manaus, where there were the most eBird checklists over 2012 —
2021. Thus we have low variability in covariates between the sites. This might make it challenging for our models
to generalize to more distant sites.

- A variable and sometimes very strong class imbalance between detections and non-detections.

- eBird data was skewed seasonally and over time, with the number of observations greatly increasing in more
recent years.

Future directions to pursue:
- Test for more species over a broader area to get more variability in environmental covariates.
- Implement spatial correlation effects in our traditional ML models
- Find new ways to account for variable class imbalance



