Jimmys and Joes vs X's and O’s

Predicting results in college sports analyzing talent
accumulation and on-field success.
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Background + Motivation

Changes in College Sports Landscape

e SCOTUS O’Bannon ruling allows name-image-likeness (NIL)
money for players

e Recruiting industry evaluates high school players, a difficult task FA N D U E L

e Teams allocating resources based on player evaluations
e Sports betting legalized in many states
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e Predict future on field success
e Our Targets — regular season win percentage, individual

game results \ ‘ ,
e Our Features — Recent on-field performance + Talent level S o o

of team



Datasets

\

Data Sources o o— —
BDD E=ESrii
e College Football Database API

e ESPN, Sports Reference - web scraping
e 247Sports Composite Rankings - web scraping §EPFQFBI;II-\JSC =
Rank Team Total 5-stars 4-stars 3-stars Avg Points
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@ Georgia 28 Commits 5 19 4 93.61 317.05
1

ﬂ Alabama 28 Commits 5 17 6 93.12 310.74
O Oregon 27 Commits (o] 22 5 92.19 293.20
3
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Stakeholders + KPlIs

Key Performance Indicators

1. Identify key features that determine on-field outcomes

2. Predict season win totals accurately

3. Highly explainable model that allows for actionable
insights

Stakeholders

e University athletic departments + NIL Collectives
e College coaching staffs (for assembling rosters)
e Professional and amateur sports gamblers




Feature Selection + Engineering

ELO Rating of Selected Teams Over Time

2400 1 —— Vanderbilt

On-Field + Advanced Analytics ]| — o
ELO Rating, ESPN FPI P
Points/game, TDs/game, turnover margin, etc. o] W

Offensive/Defensive success rates
Previous success of coach

Recruiting + Talent Metrics

e Talentlevel based onrecent recruiting
e Blue Chip Ratio o7
e Usages: %'s of returning talent from previous year
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Exploratory Data Analysis

win_pct

Exploring Talent & On-field Features

e Win Percentage vs. various features
e Explored “tiers” of teams based on recent success
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Model 1 - Game by Game

Feature Importances - Game by Game

e Usein-game performance
stats to predict outcomes for
every matchup (win or loss)

e Prioritized recent
performance, averaging
performance over 4 game
window

e Baseline model predicts that
the team with the higher
pregame ELO will win with
probability 1
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Gradient Boost
Random Forest




Model 1 - Results

Mean Squared Error (MSE) - Game by Game Model

e Compared baseline with 4 other classification models to predict the probability of the game
outcome.
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Model 1 - Logistic Regression

Feature Importances - Game by Game

e Featureimportance obtained by multiplying each coefficient by the standard deviation of
that feature in the training data

Feature Importances of top 20 Features for Logistic Regression

teaml_pregame_elo
team2_pregame_elo
team1_def_rushingYards
team1_home_away
team2_home_away
team2_def_rushingYards
team2_off_passCompletes
team1_def_passCompletes
team1_off_netPassingYards
team1_def_netPassingYards
team1_def_passAttempts
team1_off_passCompletes
team1_off_turnovers
team2_def_netPassingYards
team2_off_yardsPerPass
team2_off_netPassingYards
team1_off_yardsPerPass
team2_def_totalthirdDowns
team1_def_firstDowns
team2_off_passAttempts
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Model 2 - Season Level

Feature Importances - Season Level

e Predict regular season win percentage for each team using previous performance + recruiting
e Used Random Forest + Lasso to measure relative feature importance

Feature Importances

elo

usages
career_win_pct
off_success_rate
recent_win_pct

Strength of schedule

talent_level

turnover_margin
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Relative Importance



Model 2 - Results

Mean Squared Errors - Season Level Model

e Baseline Model: Naive forecast, same win % as last year

Mean Squared Errors for Cross Validation
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Model 2 - Results

Percent Improvements - Cross Validation

Baseline Model: Naive forecast, same win % as last year
Linear Regression outperformed out-of-box other models
Used 5-fold cross validation, averaged mean-squared errors

model

Baseline Naive Forecast
LinearRegression
KNeighborsRegressor
RandomForestRegressor
XGBRegressor

LSTM

avg_mse

0.0484019

0.0307367

0.0380674
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0.0382383

0.0337128

avg_rmse
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0.181503
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0.18361

pct_improve_mse
0
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20,3112
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16.5424



Model 2 - Results

Evaluating on the Test Set

e Evaluated best model performing model (Linear Regression) on our test set (2023 data)

model test_mse test_rmse pct_improve_mse pct_improve_rmse
LinearRegression  0.0252754 0.158982 35.5216 17.9031

LSTM 0.0239591 0.154787 40.6756 20.56526



Model 2 - Results

Evaluating on the Test Set

e COVID-19 altered 2020 season significantly. Player opt outs, shortened
schedules, player illness, etc. Hence bad MSE in cross-validation

RMSE Improvement Over Baseline Model by Year
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Conclusions

EDA + Feature Selection

1. ELO dominates importance - recent results matter most (+ home field)
2. Talentlevels matter less over all teams, more for elite teams
3. Coaching career success important, even from previous coached teams

Modeling

e Game x Game - upwards of 38% improvement over baseline w/ Logistic Regression
e Season Level - upwards of 37% improvement over baseline w/ Linear Regression
e Predict number of wins to within 1.908 per season



Future Work

Improving Models

Hyperparameter tuning, especially for XGBoost, LSTM

Change optimizers, learning rates, number/size of hidden layers
Gather more data over longer time frame

Expand investigation of game by game predictions

Expanding Features + Targets

e Predict more targets:

o Points per game, TDs per game, etc..

o Total score over/unders

o  Other more granular predictions
e Classification on sports bets: to take bet vs. not take bet
e Expand to other sports, particularly college basketball



Web Application

Allows users to interact with data + model wins

e Explore your team’s data at: https:/bain-cfb-modeling-erdos.streamlit.app/ =g

Explore Your Team's Data

Select Year Select Team

2024 ~ South Carolina 2

@ South Carolina Gamecocks

Model Predicted 2024 Record: 6-6 (1= 1.908 wins)

Note: Record predicted using model trained on 2014-2023 data. See fb-modeling-erdos/tree/main for more info!

Location: Columbia, SC Conference: SEC

Stadium Capacity: 80250.0 Current Coach: Shane Beamer

Heatmap of 2024 South Carolina Recruits ELO Rating of South Carolina Since 2024

To G An ELO rating R 4 sets/updates an expectation that a team will win a given game using the
# + | formula By = 1/(1 + 10(Ra~R4)/400) E1 0 ratings were the most important factor in our
United St — | model for determining wins.
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Information on 2024 South Carolina Recruits

year  name star  state  ranking position

2024 Dylan Stewart 5 DC 15 09939 EDGE i

2024 Josiah Thompson 5 sC 35 09839 OT 8
Michael Smith 4 GA 147 09361 TE 76

2024 Wendell Gregory 4 GA 160 09326 LB 7

2024 Wendell Gregory 4 GA 179 09262 EDGE 74

2024 Kam Pringle 4 sC 180 09261 OT 15
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Recent Stats for South Carolina Leading Into 2024

For definitions of these terms see our writeup: h

erdos
year  recent_win_pct
2014 06286
2015 06223
2015 06223

talent_level

239.05

235.65

235.65

-
2010 201 2020
hub, -modeling:

blue_chip_ratio  total_tds | totalYards  off_success_rate

03053 57 5880 0.4595

03295 51 5754 0.4655

03295 51 5754 0.4655


https://bain-cfb-modeling-erdos.streamlit.app/

