
Predicting Drug Potency for the TRPM8 Cold Receptor: A Data Science Approach

Adedolapo Ojoawo, Carmen Al Masri, Jaehyoun Seiler, Jessica Pan

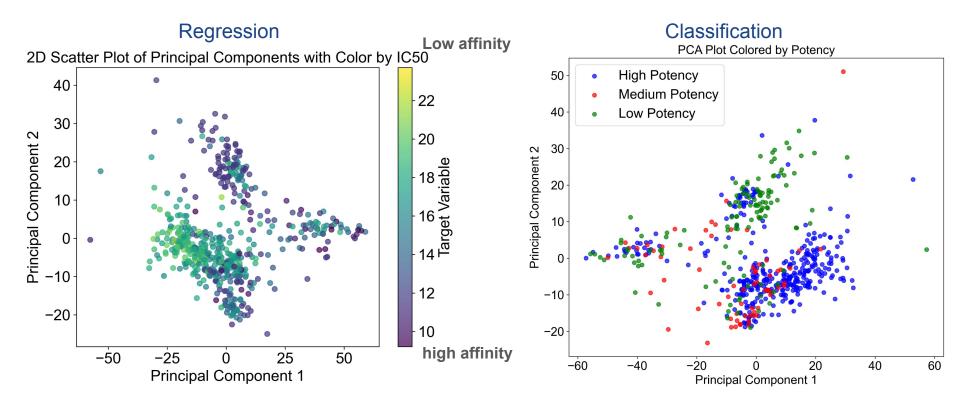
QSAR(Quantitative structure-activity relationship) Workflow for targeting TRPM8

Adapted from Palchevskyi et al. Commun. Biol 2023 Target: Transient receptor potential M8 protein (CHEMBL1667665) - ChEMBL

Method

Preprocessing: 1168 (ChEMBL) \rightarrow 654 compounds

• Removed data with empty values, salt ions, small fragments, duplicates. Ensured correct SMILE representation. Standardized IC50.

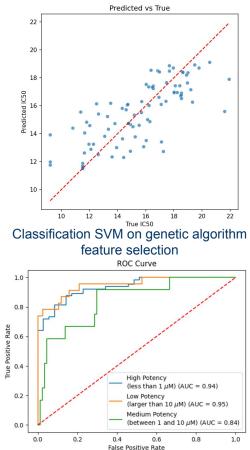

Descriptor calculation

• 3D properties, 2D topological descriptors, quantum mechanical properties, an constitutional properties (number of atoms, type, size etc)

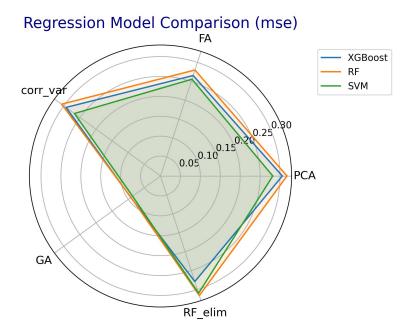
- 6 quantum -, 23 physicochemical -, 62 topological -, 917 3D -descriptors/features selected.
- Removed features with low variance/high correlation, then by Factor Analysis, PCA, Genetic Algorithm, or Random Forest elimination

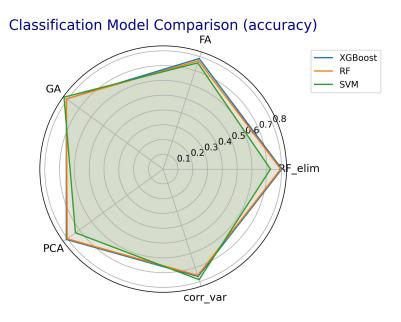
Model training on reduced features	XGBoost	Classification
model training off reduced reduces		Regression
	Random Forest	Classification
		Regression
	Support Vector Regression	Classification
		Regression


PCA-based feature reduction



Model training on reduced features


model_type	problem_type	input_type	mse	r2_score	pearson_corr
XGBoost	regression	PCA	3.2704973524449734	0.6420536843052471	0.8013067671152532
XGBoost	regression	Factor_Analysis	3.7684174475335417	0.5875577944326891	0.772378957618285
XGBoost	regression	correlation_variance_filter	3.412345623444292	0.6265288082634062	0.7967625992038058
XGBoost	regression	genetic_algorithm	10.871522837415622	-0.0898126817928817	0.0636711776215474
XGBoost	regression	random_forest_elimination	3.587119082748313	0.6074003672046381	0.7800653648363141
random_forest	regression	РСА	3.149953623164591	0.6552468409191063	0.8095983688675181
random_forest	regression	genetic_algorithm	10.926797065431074	-0.0953536308915889	0.0729185251657888
random_forest	regression	random_forest_elimination	3.167114897972596	0.6533685898679144	0.8086356378510251
random_forest	regression	Factor_Analysis	3.572296932225368	0.6090226079829083	0.7805909424400309
random_forest	regression	correlation_variance_filter	3.259094175886536	0.6433017284393474	0.8023156357013755
SVM	regression	random_forest_elimination	3.2313366798065664	0.646339704742037	0.8051846703835307
SVM	regression	PCA	3.5482581575654395	0.6116535811640684	0.7841156051821632
SVM	regression	Factor_Analysis	3.9124194415509614	0.5717971997412733	0.7656218872317448
SVM	regression	genetic_algorithm	11.561558285184107	-0.1589850869021825	0.0320107087875223
SVM	regression	correlation_variance_filter	3.745183812068768	0.5901006474970993	0.7690865408730042


model_type	problem_type	input_type	accuracy	precision	recall	f1_score
XGBoost	classification	random_forest_elimination	0.8015267175572519	0.774837858003788	0.8015267175572519	0.7823988768974293
XGBoost	classification	Factor_Analysis	0.7862595419847328	0.7336113952939324	0.7862595419847328	0.7505746162234712
XGBoost	classification	genetic_algorithm	0.808080808080808081	0.7890032162420222	0.808080808080808081	0.7966414182428475
XGBoost	classification	PCA	0.8091603053435115	0.7882316656112057	0.8091603053435115	0.7854483550250262
XGBoost	classification	correlation_variance_filter	0.7633587786259542	0.7136565724351984	0.7633587786259542	0.737670972219113
random_forest	classification	Factor_Analysis	0.7709923664122137	0.6870229007633588	0.7709923664122137	0.723912487673034
random_forest	classification	random_forest_elimination	0.7938931297709924	0.765727963724147	0.7938931297709924	0.775068352844068
random_forest	classification	genetic_algorithm	0.808080808080808081	0.8030519094690217	0.808080808080808081	0.804023938870891
random_forest	classification	correlation_variance_filter	0.7557251908396947	0.6756633951290439	0.7557251908396947	0.707557698317039
random_forest	classification	PCA	0.8015267175572519	0.7885712738887988	0.8015267175572519	0.791231370872293
SVM	classification	correlation_variance_filter	0.7862595419847328	0.7787262312137279	0.7862595419847328	0.782235635244689
SVM	classification	PCA	0.732824427480916	0.7958726554574072	0.732824427480916	0.756023175645250
SVM	classification	random_forest_elimination	0.7251908396946565	0.7580128964961358	0.7251908396946565	0.739860998876529
SVM	classification	genetic_algorithm	0.8282828282828283	0.8275340820795367	0.828282828282828283	0.827781692897972
SVM	classification	Factor_Analysis	0.7557251908396947	0.7452477174075737	0.7557251908396947	0.749113958560523

Model comparison

Conclusion

- Using publicly available TRPM8 targeting drugs, features were calculated and reduced using multiple methods then modeled using XGBoost, Random Forest, Support Vector Machine
- It's easier to predict high or low potency than medium potency
- For regression, Random Forest model performed best
- For classification, most methods performed well
- The models performed well with accuracies and correlations with experimental data compared to state-of-the art