
Recipe Recommender
Erdös Institute Data Science Bootcamp Spring 2024
Nadir Hajouji, Félix Almendra Hernandez, Nathan Schley, Ali Arslanhan, and Katherine Martin

https://www.youtube.com/watch?v=6edlBZ64TDk

https://www.youtube.com/watch?v=6edlBZ64TDk


Overview

Goal: Construct recommender system for recipes

Data: One million reviews of 500k recipes from food.com (Kaggle)

Research Question: Can we predict which recipes a user is likely to interact with 
using information about recipes we know they have already interacted with?

Industry use:

● Standalone product (à la NYT Cooking)
● Targeted advertising (Instacart, supermarkets)



Model

Want f : Users ✕ Recipes → Reals; 

One way of obtaining such a model:

● Find maps Users → V and Recipes → V
● Set f(user, recipe) = user dot recipe

To find a good f, need a good way of embedding users and recipes in common vector 
space. 



Data cleaning/processing

Recipes

Metadata: Name, User ID, Description, 
Recipe category, Keywords 

Continuous 
attributes: 

Cooking time, Calories, Fat 
Content, Fiber content etc.

Identify main Keyword groups

● Main ingredients (fruit, vegetables, 
dairy, non-meat protein, etc)

● Meal types (breakfast, holiday, kid 
friendly, weeknight, etc)

● Baking
● Regions (Mexican, French, etc)
● Appliances (pot, pan, ove, etc)

Apply appropriate transformations 
and standardize



Data cleaning/processing

Recipes
Cleaned attributes 

Recipe ID Name … Dairy Fruit Dessert Meat … log_calories …

273649 Strawberry 
cake 1 1 1 0 2.97

Reviews

Metadata: Recipe ID, User ID, Review, 
Rating

We made sure

1) Each recipe had at least 7 
reviews

2) Each user had reviewed at 
least 5 recipes



Training and evaluating models: General Pipeline



Training and evaluating models: General Pipeline



What didn’t work: Recipe-based models
● Using “multi-hot” encoding and continuous attributes to 

obtain embeddings of recipes
● Define “user vectors” to be average of recipe vectors that the 

user has interacted with



What worked: User-based models

● Ignore recipe data



What worked: User-based models

● Ignore recipe data
● Encode (training portion) of review data into an “affinity matrix”

(Affinity matrix = matrix where each row associated to user, each column 
associated to recipe, entry is 1 if user reviewed recipe, 0 otherwise)

n x m

n = number users
m = number recs



What worked: User-based models

● Ignore recipe data
● Encode (training portion) of review data into an “affinity matrix”

(Affinity matrix = matrix where each row associated to user, each column 
associated to recipe, entry is 1 if user reviewed recipe, 0 otherwise)

● Use Singular Value Decomposition (SVD) to factor the affinity matrix

n x k k x m

n = number users
m = number recs
k = hyperparam.



What worked: User-based models

● Ignore recipe data
● Encode (training portion) of review data into an “affinity matrix”

(Affinity matrix = matrix where each row associated to user, each column 
associated to recipe, entry is 1 if user reviewed recipe, 0 otherwise)

● Use Singular Value Decomposition (SVD) to factor the affinity matrix
● Interpret the factors as the user/recipe embeddings

n x k k x m

n = number users
m = number recs
k = hyperparam.



What worked: User-based models

● Ignore recipe data
● Encode (training portion) of review data into an “affinity matrix”

(Affinity matrix = matrix where each row associated to user, each column 
associated to recipe, entry is 1 if user reviewed recipe, 0 otherwise)

● Use Singular Value Decomposition (SVD) to factor the affinity matrix
● Interpret the factors as the user/recipe embeddings

n x k k x m

n = number users
m = number recs
k = hyperparam.
“The rank” = k



Results



Results



Visualizing the final model



Visualizing the final model

Why are Kalamata-lemon 
chicken and lemon chicken 
skewers pointing in 
different directions? 



Final product



Many thanks to…

Karthik Prabhu, Steven Gubkin, and 
Roman Holowinsky for your help and 
support for this project! 


