

TAXIDEMAND FORECASTING

Ngoc Nguyen, Edward Ramirez, Sriram Raghunath, Nazanin Komeilizadeh, Noah Gillespie, Li Meng

Motivation

- Reliably predicting taxi demand in real-time can vastly empower on-demand movements across the city:
 - Taxi companies can dispatch drivers promptly
 - Drivers can optimize route decisions to maximize earnings
 - Customers are more likely to experience timely service
- Our project: predict taxi demand with deep learning models for

times series

- Multilayer Perceptrons (MLP)
- Long Short-Term Memory (LSTM)
- Temporal Graph-based NN
-)

Data and Preprocessing

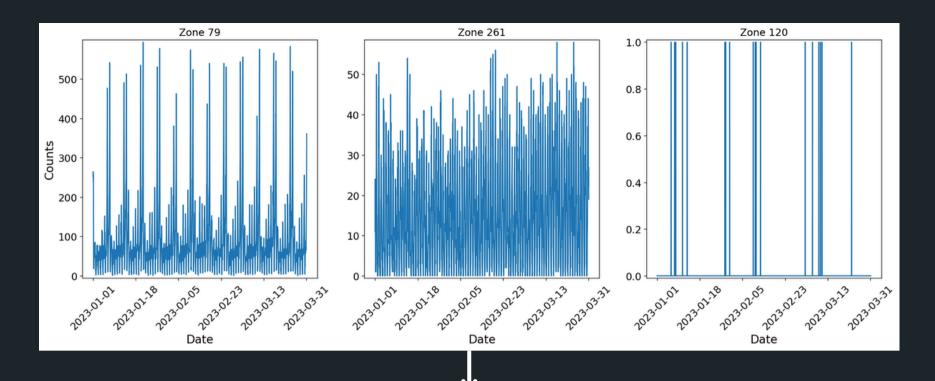
- Raw Data: NYC TLC Monthly Trip Record Data
 - Records of individual routes
 - Pickup/Dropoff Location (Taxi Zones)
 - Pickup/Dropoff Times
 - Pricing information, trip distance, etc.
 - Yellow taxis, ridesharing vehicles, and others
 - Since 2009
- Processed Data*:
 - Hourly Time Series Data for each Pickup Location
 - Number of rides per hour
 - Average price of rides per hour
 - Manhattan Taxi Zones
 - Yellow Taxis
 - 01/01/2022 03/31/2024

*For further details on processing, see the corresponding GitHub repository

	tpep_pickup_datetime	tpep_dropoff_datetime	PULocationID	DOLocationID	total_amount	tip_amount
0	2023-01-01 00:32:10	2023-01-01 00:40:36	161	141	14.30	0.00
1	2023-01-01 00:55:08	2023-01-01 01:01:27	43	237	16.90	4.00
2	2023-01-01 00:25:04	2023-01-01 00:37:49	48	238	34.90	15.00
3	2023-01-01 00:03:48	2023-01-01 00:13:25	138	7	20.85	0.00
4	2023-01-01 00:10:29	2023-01-01 00:21:19	107	79	19.68	3.28

Data and Preprocessing

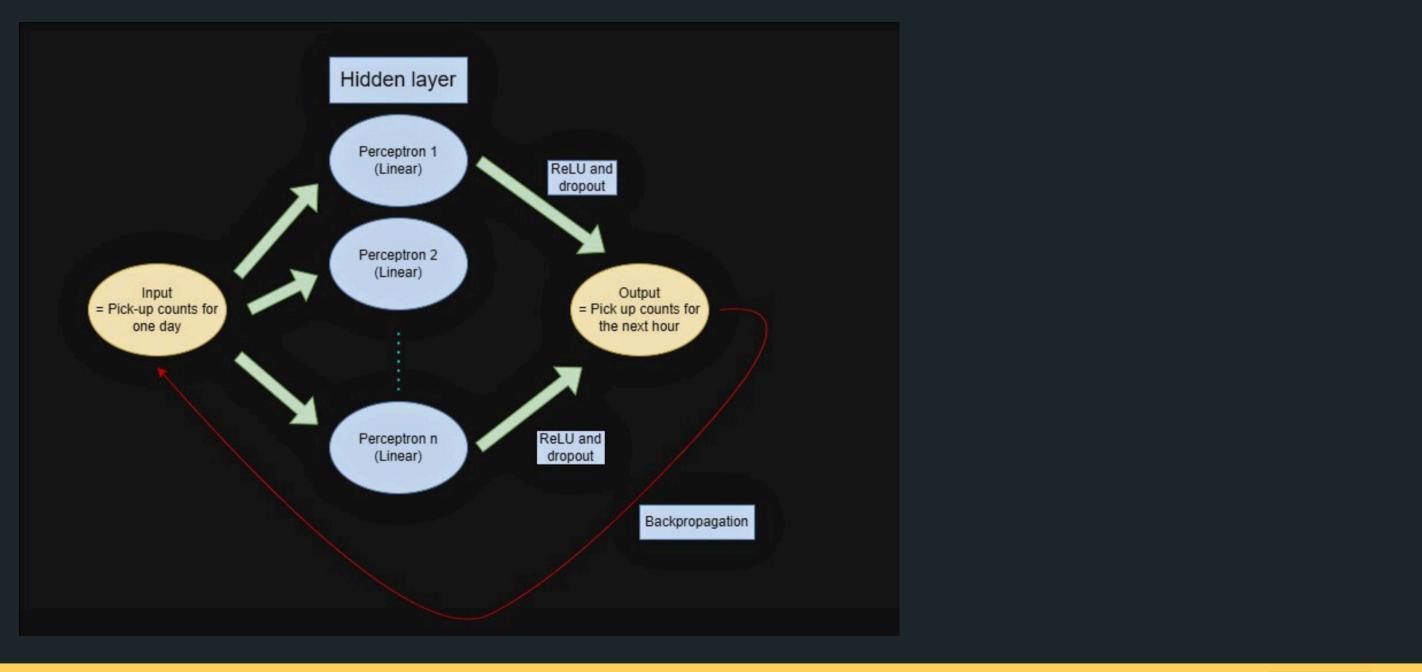
- Raw Data: NYC TLC Monthly Trip Record Data
 - Records of individual routes
 - Pickup/Dropoff Location (Taxi Zones)
 - Pickup/Dropoff Times
 - Pricing information, trip distance, etc.
 - Yellow taxis, ridesharing vehicles, and others
 - Since 2009
- Processed Data*:
 - Hourly Time Series Data for each Pickup Location
 - Number of rides per hour
 - Average price of rides per hour
 - Manhattan Taxi Zones
 - Yellow Taxis
 - 01/01/2022 03/31/2024



Taxi Demand 24 Hour Timelapse 11/24/2023

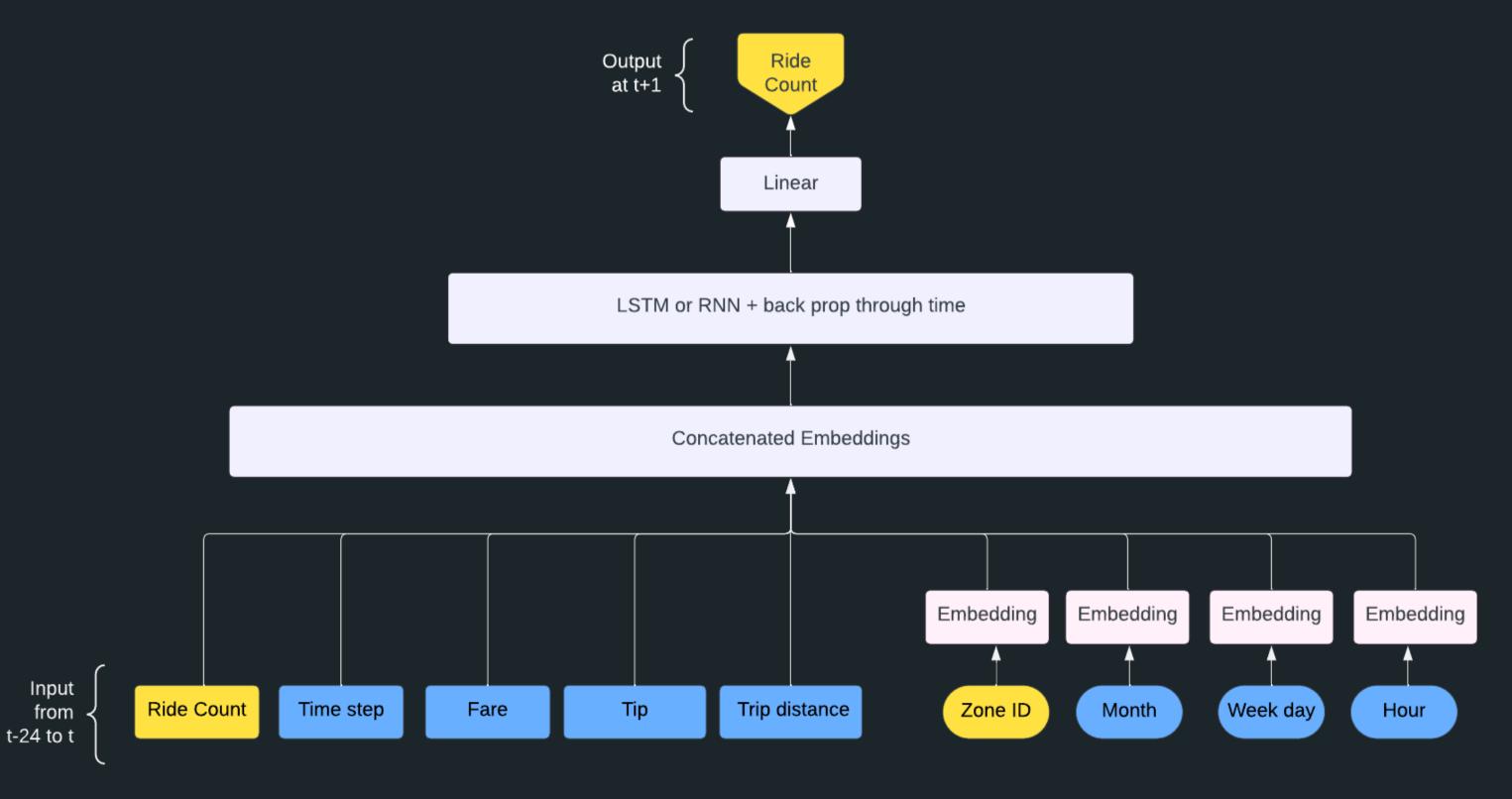
Modelling: Multilayer Perceptrons

- Simple feed forward neural network with one hidden layer
- Sliding window technique uses window size of one day to forecast next hour
- Hyperparameter tuning to obtain best learning rate, scheduling, number of neurons in hidden layer, dropout probability



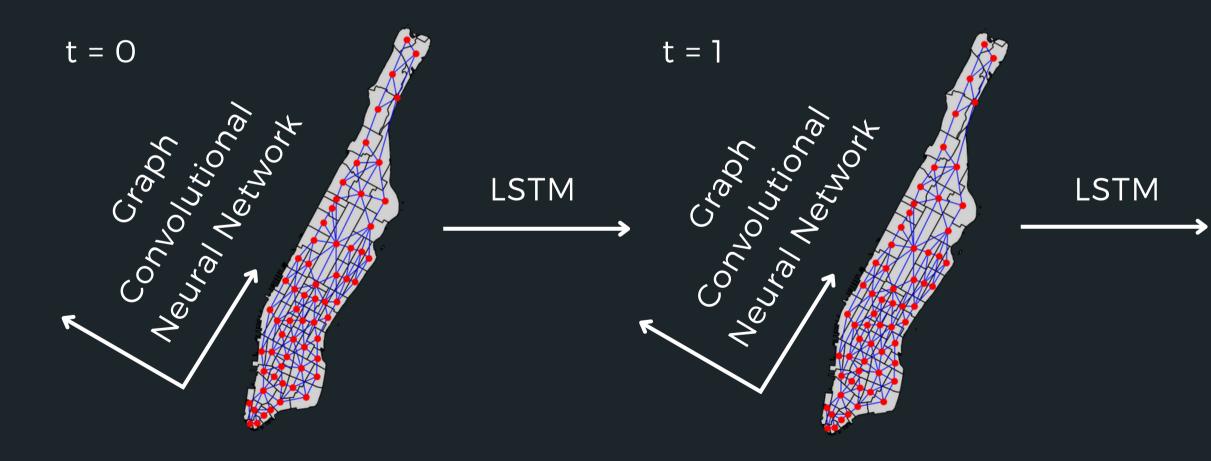
Modelling: Multi-series LSTM Models

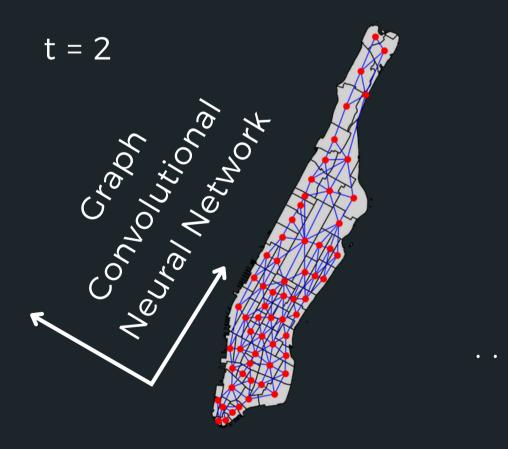
- Fit taxi counts time series for all zones simultaneously with backpropagation, moving through time in 24-hour steps.
- Categorical embeddings: help model learn each zone's unique characteristics
- Multivariate version: add additional features to capture both historical trends and seasonality patterns



Modelling: Temporal Graph-based NN

- Add graph structure to LSTM: temporal pattern within zone + spatial correlation between zones
 - Graph nodes: 63 taxi zones in Manhattan
 - Edges of the graph: distances between the taxi zones
 - Use taxi counts as the node features
- Predict demand for the next hour based on the previous 24 hours of data for each zone





Model Evaluation

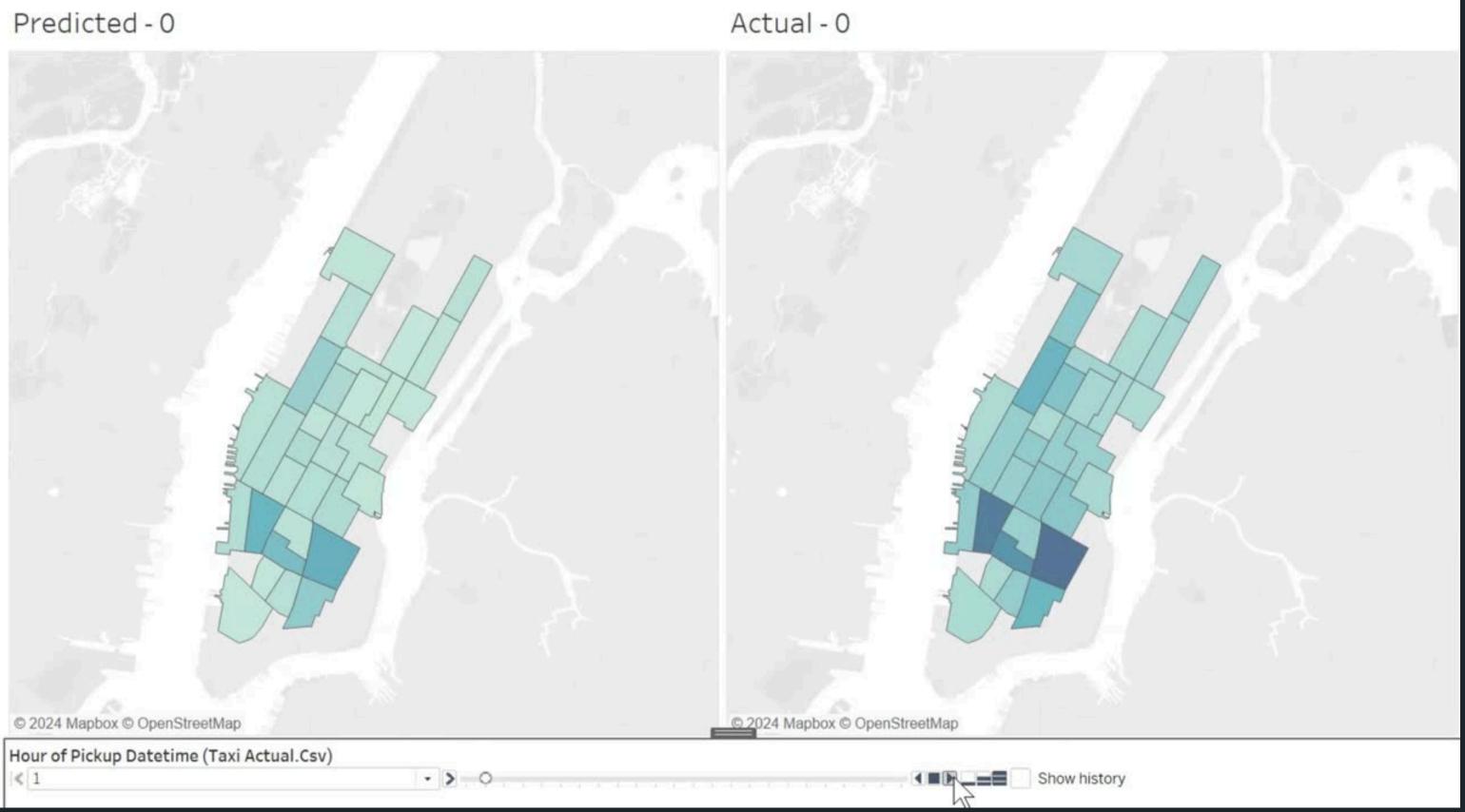
- Baseline: ARIMAX
 - ARIMA models the random nature of the time series.
 - A Fourier Series models the daily and weekly trends of the time series.
- Multilayer perceptron performs better than ARIMAX
- Temporal models performed the best

 Including fare information made the
 predictions worse
 - Time variables that encoded day of week, month of year, and hour improved performance

Mode
ARIMA
Multilayer Per
Ride Counts
Ride Counts + Tim
Multivariate + Tim
Temporal Graph

	KPI (Validation Set)			
el	RMSE (Rides)	SMAPE		
AX	40.02	69.57%		
erceptrons	23.58	63.37%		
ts LSTM	16.56	57.82%		
me Vars LSTM	15.86	57.81%		
me Vars LSTM	16.46	57.25%		
h-based NN	17.09	55.38%		

Graph Neural Network Predictions



Future Directions

A few directions that can enhance our best model and extend its application:

- Model to predict demand of particular routes
- Predict the next few hours, as opposed to the next hour
- Additional features outside the dataset such as weather forecasts
- Larger training dataset: more taxi zones + ridesharing vehicle data
- Hyperparameter tuning

