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Motivation

e Reliably predicting taxi demand in real-time can vastly empower
on-demand movements across the city:

o Taxi companies can dispatch drivers promptly

o Drivers can optimize route decisions to maximize earnings

i

o Customers are more likely to experience timely service
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tvisss A LN e Our project: predict taxi demand with deep learning models for

times series

o Multilayer Perceptrons (MLP)
o Long Short-Term Memory (LSTM)

o Temporal Graph-based NN
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e Raw Data: NYC TLC Monthly Trip Record Data
o Records of individual routes
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= Pickup/Dropoff Location (Taxi Zones)

= Pickup/Dropoff Times

» Pricing information, trip distance, etc.
o Yellow taxis, ridesharing vehicles, and others
o Since 2009

e Processed Data*:
o Hourly Time Series Data for each Pickup Location
= Number of rides per hour
= Average price of rides per hour
= Manhattan Taxi Zones
o Yellow Taxis
o 01/01/2022 - 03/31/2024
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‘*For further details on processing, see the corresponding GitHub repository
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Data and Preprocessing

e Raw Data: NYC TLC Monthly Trip Record Data
o Records of individual routes
= Pickup/Dropoff Location (Taxi Zones)
= Pickup/Dropoff Times
» Pricing information, trip distance, etc.

o Yellow taxis, ridesharing vehicles, and others Taxi Demand
o Since 2009 24 Hour Timelapse

11/24/2023

e Processed Data*:
o Hourly Time Series Data for each Pickup Location
= Number of rides per hour
= Average price of rides per hour
= Manhattan Taxi Zones
o Yellow Taxis
o 01/01/2022 - 03/31/2024
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‘*For further details on processing, see the corresponding GitHub repository
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Modelling: Multilayer Perceptrons

e Simple feed forward neural network with one hidden layer
e Sliding window technique uses window size of one day to forecast next hour

e Hyperparameter tuning to obtain best learning rate, scheduling, number of neurons in hidden layer, dropout probability
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Modelling: Multi-series LSTM Models

e Fit taxi counts time series for all zones simultaneously with backpropagation, moving through time in 24-hour steps.
e Categorical embeddings: help model learn each zone’'s unique characteristics

e Multivariate version: add additional features to capture both historical trends and seasonality patterns
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Modelling: Temporal Graph-based NN

e Add graph structure to LSTM: temporal pattern within zone + spatial correlation between zones
o Graph nodes: 63 taxi zones in Manhattan
o Edges of the graph: distances between the taxi zones
o Use taxi counts as the node features

e Predict demand for the next hour based on the previous 24 hours of data for each zone
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Model Evaluation

o ARIMA models the random nature of the -

e Baseline: ARIMAX
ARIMAX 40.02 69.57%

KPI (Validation Set)
RMSE (Rides) SMAPE

o A Fourier Series models the daily and
weekly trends of the time series.
e Multilayer perceptron performs better than
ARIMAX
e Temporal models performed the best
o Including fare information made the
predictions worse
o Time variables that encoded day of
week, month of year, and hour improved
performance



Graph Neural Network Predictions

Predicted -0

Hour of Pickup Datetime (Taxi Actual.Csv)




Future Directions

A few directions that can enhance our best model and extend its application:
e Model to predict demand of particular routes
e Predict the next few hours, as opposed to the next hour
e Additional features outside the dataset such as weather forecasts

e Larger training dataset: more taxi zones + ridesharing vehicle data

e Hyperparameter tuning




