

Detecting Cancer From Blood Tests

Team: Protein Profiles

Parinaz Fathi, Simeiyun (May) Liu, Nihan Akis-Man, Cerise Chen

Erdos Data Science Bootcamp, Fall 2024

Introduction

Cancer: one of the leading causes of death worldwide

Early detection \rightarrow better outcomes

Crosby et al., Science, 2022, DOI 10.1126/science.aay9040

Cancer alters the levels of some proteins in blood

Our goal: detect cancer based on blood test results

Our Datasets

Esophageal Cancer (n = 91) 92 proteins

Gao et al., 2024, Journal for Immunotherapy of Cancer

Hodgkins Lymphoma (n = 54) 92 proteins

Gonzalez-Kozlova et al., 2024, Cancer Research Communications

Southern German Population-Based Cohort (n = 170) 728 proteins

Petrera et al., 2020, Journal of Proteome Research

Alvez et al., 2023, Nature Communications

49 proteins in common across all of these data sets

Exploratory Data Analysis

Objective 1: Can we tell whether someone has cancer?

This is a binary classification problem with class imbalance

Train-test split (test = 20 %) with stratification + 5-fold cross-validation

Cancer

347

0

Objective 2: If we know someone has cancer, can we determine what type? This is a multiclass classification

This is a multiclass classification problem with class imbalance

Train-test split (test = 20 %) with stratification + 5-fold cross-validation + penalty

Testing Results

OUL OI 9!					Accuracy: 0.7365	
Model	Accuracy	ROC AUC	F-1 Score		ROC AUC: 0.9534	
Logistic Regression	0.7663	0.9571	0.7498		F-1 Score: 0.7194	J
k-Nearest Neighbors(k = 17)	0.3937	0.8184	0.4030		1.0	Training F1 Test F1
Random Forest	0.6528	0.9189	0.6536		0.8 -	
Extra Trees	0.6096	0.9029	0.6119		E 0.7 - 0.6 -	
XGBoost	0.7138	0.9471	0.7123		0.5 -	
Multinomial Regression	0.5932	0.9122	0.5920		2.5	5.0 7.5 10.0 12.5 15.0 17.5 Number of Neighbors (k)

Objective 3: How can we use the fewest proteins possible to distinguish between different cancer types

Train-test split (test = 20 %) with stratification + 5-fold cross-validation + SelectKBest to choose the top 200 proteins + penalty

ROC AUC (One-vs-Rest) - Logistic Regression: 0.858

What type out of 9 with minimal # of proteins?

	Training			Testing			
	Accuracy	ROC AUC	F-1 Score	Accuracy	ROC AUC	F-1 Score	
1463 Proteins	0.7654	0.9625	0.7662	0.7567	0.9596	0.7519	
200 KBest Proteins	0.7197	0.9461	0.7208	0.7331	0.9486	0.7324	

Conclusions and Future Work

Future Work: Validate with larger datasets and other cancer types **Acknowledgements:** Dohoon Kim (Team Mentor), Erdos Instructor and Advisor Steven and Alec