Insights into Diabetes Prevalence in the US

Leyda Almodóvar Neal Edgren Chiara Mattamira Shravan Patankar

> Mentor: Bailey Forster

Diabetes Stats

of American in 2021 had diabetes

Number of Americans diagnosed with diabetes every year

% Diabetes is distributed highly unequally across counties

Our Project

Goal: Analyze high risk for diabetes based on demographic, socioeconomic, environmental, and health behaviors data

Motivation:

- Understand which populations are at risk at a local level
- Identify key risk predictors
- Provide insights to help make informed policy decisions

Features

4

Data Info and Data Cleaning

- Source: County Health Rankings & Roadmaps (CHR&R)
- Size: 3200 rows and 88 columns
- Removed
 - rows with aggregated state data
 - counties with more than 35 null values
 - categorical data
 - features with more than 100 missing values
 - features that are redundant or obviously correlated
- • Imputed missing values using Knn with n = 10

Initial Performance Comparison

	RMSE for Training set	RMSE for Validation set
Mean model	2.23	2.31
Random sampling	3.16	3.26
SLR on % w/ Obesity	1.64	1.64
Linear regression	0.47	0.50
Random Forest	0.20	0.564
XGBoost	0.02	0.556

Model Evaluation

- Root Mean Square Error (RMSE)
 - magnifies large errors and ignores small ones
 - biased
- Mean Absolute Error (MAE)
 - treats all errors equally
 - unbiased
- Mean Absolute Percentage Error
 - more interpretable comparison

Tuned XGBoost Model	Validation Error on 80/20 split of training set	Test error after fitting to full training set		
RMSE	0.51	0.49		
MAE	0.39	0.37		
MAPE	3.7%	3.5%		

Samp	le Predictions:							
	County	State	%	Adults	with	Diabetes	Predicted	Residual
472	Lincoln	Arkansas				12.2	12.9	-0.7
273	Richmond City	Virginia				12.5	12.4	0.1
449	Marion	Georgia				13.3	13.0	0.3
391	Caribou	Idaho				8.4	8.1	0.3
577	Adair	Missouri				10.6	10.4	0.2

Modeling: Final Model Feature Importance

10

	Full Model	Health Behavior	Socio- economic	Demograp hic	Physical Environm ent	Access to care
RMSE (validation set)	0.31	0.52	0.72	1.02	1.34	1.74

Importance by Feature Group

Health Behaviors **Physical environment** % Physically Inactive % Food Insecure % Households with Broadband Access % Insufficient Sleep Food Environment Index % Adults with Obesity **Demographics** Access to care % Uninsured % Non-Hispanic White % with Annual Mammogram % Black % Asian % Uninsured Children Socio-economic factors % Children in Poverty % Completed High School 12 % Children in Single-Parent Households

Low vs High Household Income

Above Median

Below Median

Split by % Non-Hispanic White

Below Median

Summary and Future Directions

• Summary:

- Both health behaviors and socio-economic factors play a significant role in diabetes prevalence in the US.
- Feature importance varies by **income** and **race**.

• Future Directions:

- Focus on a specific state/geographical region
- Inferential model
- Further reduce features list

Acknowledgements

- Our mentor Bailey Forster
- Erdös Institute
 - Steven Gubkin
 - Alec Clott
 - Roman Holowinsky

