SPOT-POP

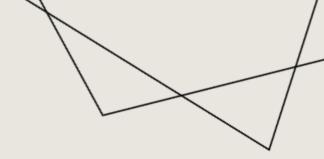
Classification and Prediction of Spotify Songs Popularity

Ali Asghari Adib, Melika Shahhosseini ERDOS Data Science Bootcamp May 2024 Project

OUTLINE

- Overview
- Dataset
- Exploratory Data Analysis (EDA)
 - General EDA
 - Data Cleaning
 - Removing outliers
 - Classification
- Model Selection and Results

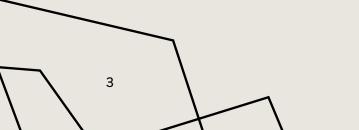
OVERVIEW



The main objective of this project is to develop a predictive model that can classify the popularity of Spotify tracks based on their audio features. By analyzing a dataset containing various attributes of Spotify tracks, we aim to identify key factors that contribute to a track's popularity and create a reliable predictive system.

Stackholders:

- Music Producers and Artists: Gain insights into the factors contributing to track popularity.
- Marketing and Promotion Teams: Utilize predictions to target potential hits for marketing campaigns.



DATASET

The dataset consists of more than 100,000 Spotify tracks spanning 125 different genres, with each track described by a range of audio features and metadata.

4

Feature Name	Description	Feature Name	Description				
track_id	The Spotify ID for the track	explicit	Whether or not the track has explicit lyrics (true = yes it does; false = no it does not OR unknown)				
artists	The artists' names who performed the track. If there is more than one artist, they are separated by a ;	danceability	Danceability describes how suitable a track is for dancing based on a combination of musical elements				
album_name	The album name in which the track appears	energy	Energy is a measure from 0.0 to 1.0 and represents a perceptual measure of intensity and activity. Typically, energetic tracks feel fast, loud, and noisy. For example, de- metal has high energy, while a Bach prelude scores low on scale				
track_name	Name of the track	key	The key the track is in. Integers map to pitches using standard Pitch Class notation. E.g. 0 = C, 1 = C♯/D♭, 2 = D, and so on. If no key was detected, the value is -1				
popularity	The popularity of a track is a value between 0 and 100, with 100 being the most popular. The popularity is calculated by algorithm and is based, in the most part, on the total number of plays the track has had and how recent those plays are.	loudness	The overall loudness of a track in decibels (dB)				
duration_ms	The track length in milliseconds	mode	Mode indicates the modality (major or minor) of a track, the type of scale from which its melodic content is derived. Major is represented by 1 and minor is 0				
speechiness	Speechiness detects the presence of spoken words in a track. The more exclusively speech-like the recording (e.g. talk show, audio book, poetry), the closer to 1.0 the attribute value.	valence	A measure from 0.0 to 1.0 describing the musical positiveness conveyed by a track.				
acousticness	A confidence measure from 0.0 to 1.0 of whether the track is acoustic. 1.0 represents high confidence the track is acoustic	tempo	The overall estimated tempo of a track in beats per minute (BPM). In musical terminology, tempo is the speed or pace of a given piece and derives directly from the average beat duration				
instrumentalness	Predicts whether a track contains no vocals. The closer the instrumentalness value is to 1.0, the greater likelihood the track contains no vocal content	time_signature	An estimated time signature. The time signature (meter) is a notational convention to specify how many beats are in each bar (or measure). The time signature ranges from 3 to 7 indicating time signatures of 3/4, to 7/4.				
liveness	Detects the presence of an audience in the recording. Higher liveness values represent an increased probability that the track was performed live.	track_genre	The genre in which the track belongs				

PRELIMINARY EDA AND CLEANING

Data columns (total 21 columns):

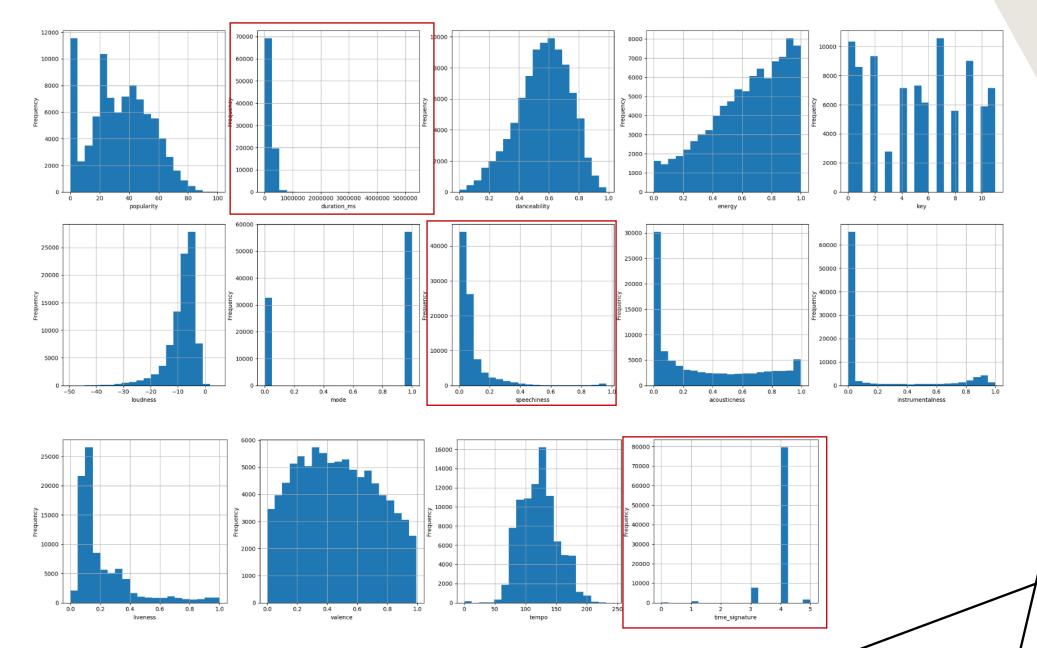
#	Column	Non-Null Count	Dtype
0	Unnamed: 0	114000 non-null	int64
1	track_id	114000 non-null	object
2	artists	113999 non-null	object
3	album_name	113999 non-null	object
4	track_name	113999 non-null	object
5	popularity	114000 non-null	int64
6	duration_ms	114000 non-null	int64
7	explicit	114000 non-null	bool
8	danceability	114000 non-null	float64
9	energy	114000 non-null	float64
10	key	114000 non-null	int64
11	loudness	114000 non-null	float64
12	mode	114000 non-null	int64
13	speechiness	114000 non-null	float64
14	acousticness	114000 non-null	float64
15	instrumentalness	114000 non-null	float64
16	liveness	114000 non-null	float64
17	valence	114000 non-null	float64
18	tempo	114000 non-null	float64
19	time_signature	114000 non-null	int64
20	track_genre	114000 non-null	object
dtyp	object(5)		

- Null Values: One null value was detected and removed from the dataset.
- **Duplicates**: No duplicated rows were found initially. However, after further EDA, it was learned that there are 24259 duplicated tracks in the data that have been assigned different Genres.

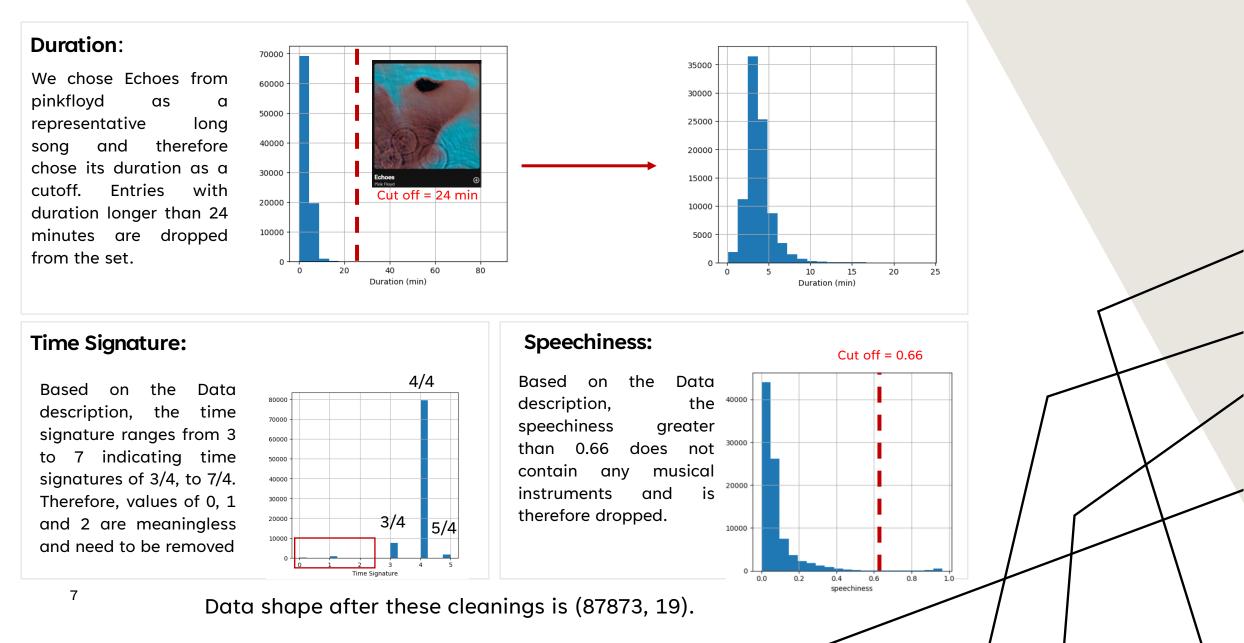
#	track_id	artists	album_name	track_name	track_genre	
2002	2K7xn816o NHJZ0aVq dQsha	The Neighbourhood	Hard To Imagine The Neighbourhood Ever Changing	Softcore	alt-rock	
3002	2K7xn816o NHJZ0aVq dQsha	The Neighbourhood	Hard To Imagine The Neighbourhood Ever Changing	Softcore	alternative	
91105	2K7xn816o NHJZ0aVq dQsha	The Neighbourhood	Hard To Imagine The Neighbourhood Ever Changing	Softcore	rock	

• Duplicated tracks were removed from the dataset (keep last). And the new dataset shape was (89741, 21).

DEEPER EDA AND CLEANING



DEEPER EDA AND CLEANING



CORRELATION MATRIX

popularity -	1	0.064	0.014	0.0019	0.071	-0.016	-0.02	-0.031	-0.13	-0.0017	-0.014	0.0037	0.034	-0.023
danceability -	0.064	1	0.13	0.035	0.26	-0.064	0.15	-0.17	-0.18	-0.13	0.49	-0.051	0.17	-0.082
energy -	0.014	0.13	1	0.047	0.76	-0.075	0.17	-0.75	-0.17	0.19	0.25	0.25	0.17	0.074
key -	0.0019	0.035	0.047	1	0.036	-0.14	0.032	-0.044	-0.0039	-0.0014	0.025	0.0082	0.014	0.016
loudness -	0.071	0.26	0.76	0.036	1	-0.037	0.13	-0.58	-0.44	0.1	0.28	0.21	0.15	-0.0033
mode -	-0.016	-0.064	-0.075	-0.14	-0.037	1	-0.071	0.091	-0.053	0.015	0.027	0.00028	-0.027	-0.047
speechiness -	-0.02	0.15	0.17	0.032	0.13	-0.071	1	-0.13	-0.087	0.069	0.062	0.077	0.074	-0.1
acousticness -	-0.031	-0.17	-0.75	-0.044	-0.58	0.091	-0.13	1	0.1	-0.057	-0.098	-0.21	-0.17	-0.14
instrumentalness -	-0.13	-0.18	-0.17	-0.0039	-0.44	-0.053	-0.087	0.1	1	-0.082	-0.33	-0.05	-0.052	0.14
liveness -	-0.0017	-0.13	0.19	-0.0014	0.1	0.015	0.069	-0.057	-0.082	1	0.024	0.025	0.016	0.014
valence -	-0.014	0.49	0.25	0.025	0.28	0.027	0.062	-0.098	-0.33	0.024	1	0.075	0.11	-0.18
tempo -	0.0037	-0.051	0.25	0.0082	0.21	0.00028	0.077	-0.21	-0.05	0.025	0.075	1	-0.011	0.027
time_signature -	0.034	0.17	0.17	0.014	0.15	-0.027	0.074	-0.17	-0.052	0.016	0.11	-0.011	1	0.0072
duration -	-0.023	-0.082	0.074	0.016	-0.0033	-0.047	-0.1	-0.14	0.14	0.014	-0.18	0.027	0.0072	1
	popularity -	danceability -	energy -	key -	loudness -	mode -	speechiness -	acousticness -	instrumentalness -	liveness -	valence -	tempo -	time_signature -	duration -

- 0.8

- 0.6

- 0.4

- 1.0

- 0.2

- 0.0

- -0.2

- -0.4

- -0.6

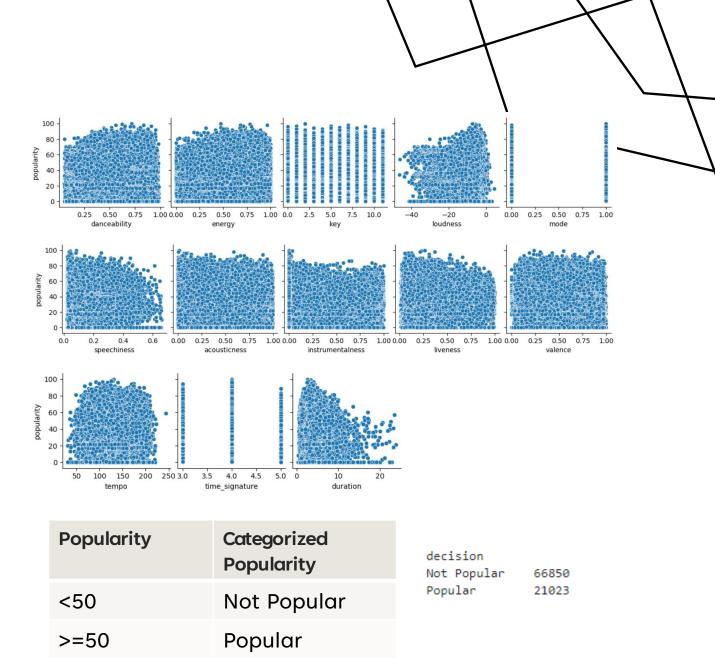
FEATURE ENGINEERING

Artists do not tend to change their genre or name to gain popularity, so out of all the categorical values we only keep 'explicit'ness which seems to slightly have an affect on popularity.

We encode this Boolean entry to a 0 and 1 int type array for modeling purposes.

Since very little correlation was observed between any of the features and popularity and our attempts with linear regression models were not successful, we decided to categorize popularity as follow and predict whether song entries will fall into "Popular" or "Not Popular" categories.

The categorized probability is replaced with the numeric probability in the dataset.



MODEL CHOICE AND DATA PREPARATION

We are going to use and compare three classification models to predict songs popularity based on the features: **Logistic Regression**, **KNN** and **Random Forest**

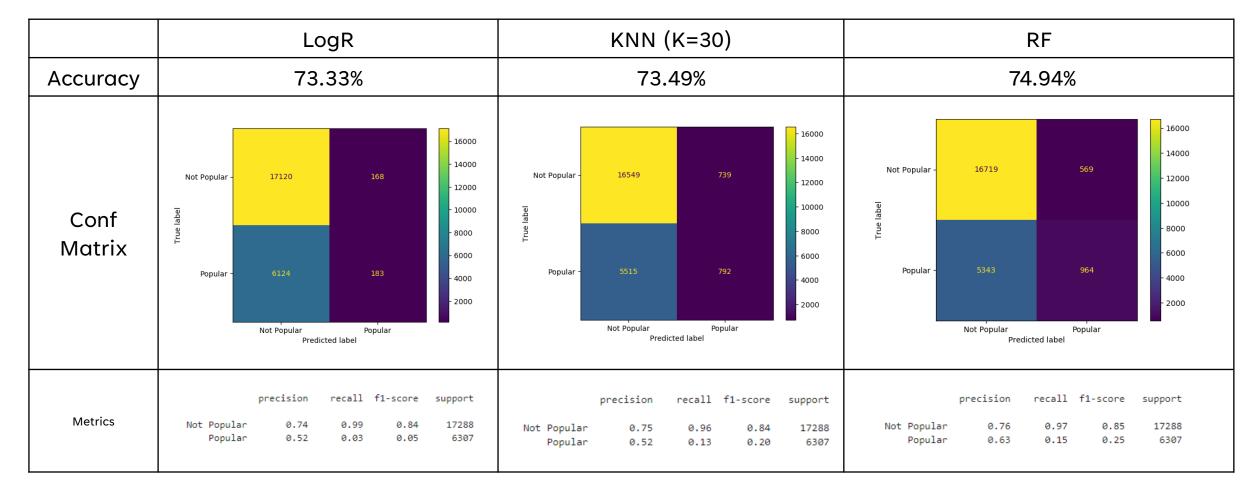
DATA Preparation:

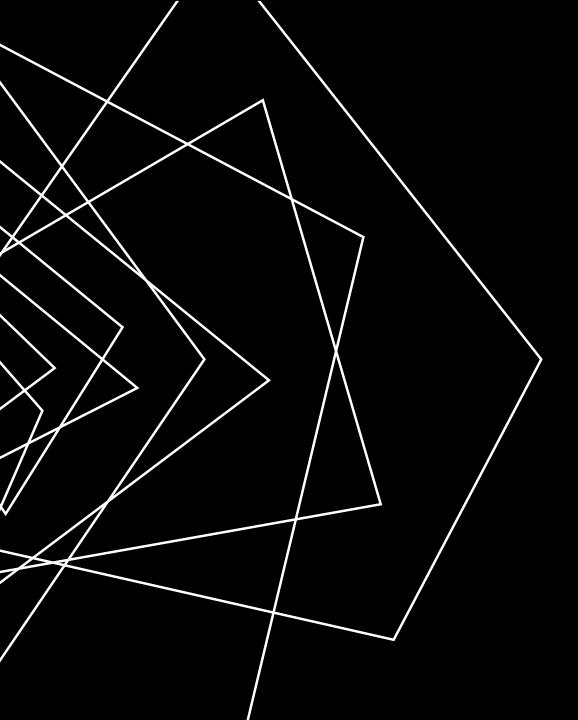
- 1. Input to the model is the cleaned dataset with the 'Popularity Decision' column dropped. 'Popularity Decision' is the output of the model.
- 2. We are using sklearn library and we are splitting our data with the stratify option to maintain a similar value count between our splits in different categories with the test size being 30%.
- 3. StandardScaler from sklearn reprocessing tools is imported and use to scale the input data.

y_train.value	_counts(normalize=True)	<pre>y_test.value_counts(normalize=True)</pre>				
decision Not Popular	0.732699	decision Not Popular 0.732698				
Popular	0.267301	Popular 0.267302				
	ion, dtype: float64	Name: proportion, dtype: float64				

MODEL RESULTS AND CONCLUSIONS

- While the models have performed well on determining "Not Popular" songs, the model is under performing on predicting "Popular" songs, which can be attributed to the smaller portion of popular data.
- Future work includes better feature selection schemes and working with GridSearchCV to find the best fit for each model.





THANK YOU

Spot-POP Team

asghariadib.1@osu.edu shahhosseini.2@osu.edu