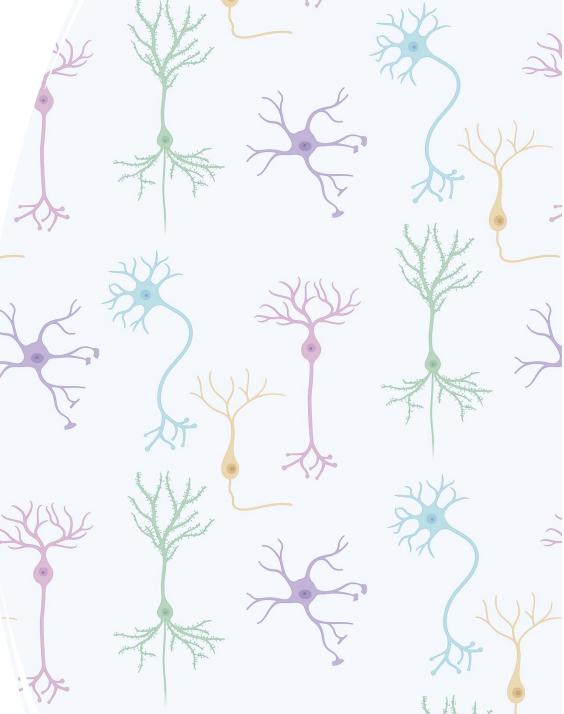
Investigating gene expression patterns across different neuroblastoma conditions using single-cell RNA-seq (scRNA-seq) data

Sangeevan Vellappan, Jingyun Qiu Erdős Institute Data Science Boot Camp Fall 2024



Motivation

scRNA-seq is essential for neuroblastoma research

- Neuroblastoma is a highly heterogeneous cancer that accounts for 15% of all pediatric cancer death.
- scRNA-seq advances neuroblastoma research by:
 - Characterizing tumor heterogeneity.
 - Profiling tumor microenvironment.
 - Revealing gene expression patterns across different cell types under different conditions

Our project

- Reanalyzed publicly available scRNA-seq data from neuroblastoma-infiltrated bone marrow.
 - Leveraging machine learning for deeper insights.
 - Integrating domain expertise for contextualized predictions.
 - Enhancing reproducibility through comprehensive pipelines.
 - Detailed rationale for preprocessing and cleanup.

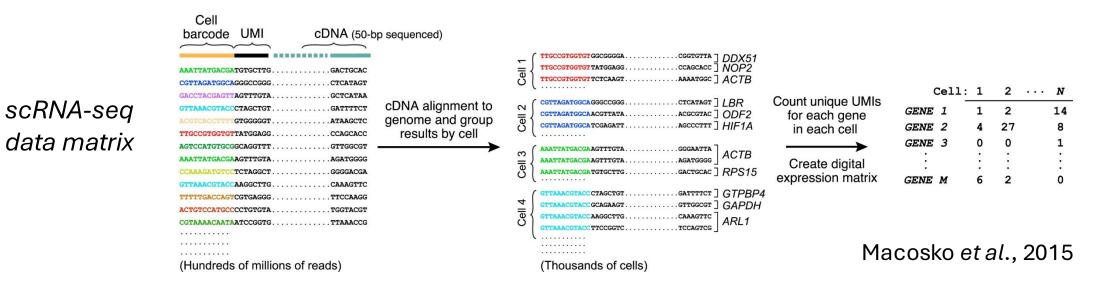
Data Gathering

Data source

The scRNA-seq dataset for this project is obtained from a paper titled "Single-cell transcriptomics and epigenomics unravel the role of monocytes in neuroblastoma bone marrow metastasis."

- GEO accession (GSE216176)
 - Healthy control
 - MYCN-amplified tumor samples

Data structure



Data Analysis Pipeline

Dimensionality Reduction

Visualization

Modeling Approach

- Quality control
- Data distribution
- Data cleaning
- Data normalization
- PCA (Principal Component Analysis)
 - UMAP (Uniform Manifold Approximation and Project)

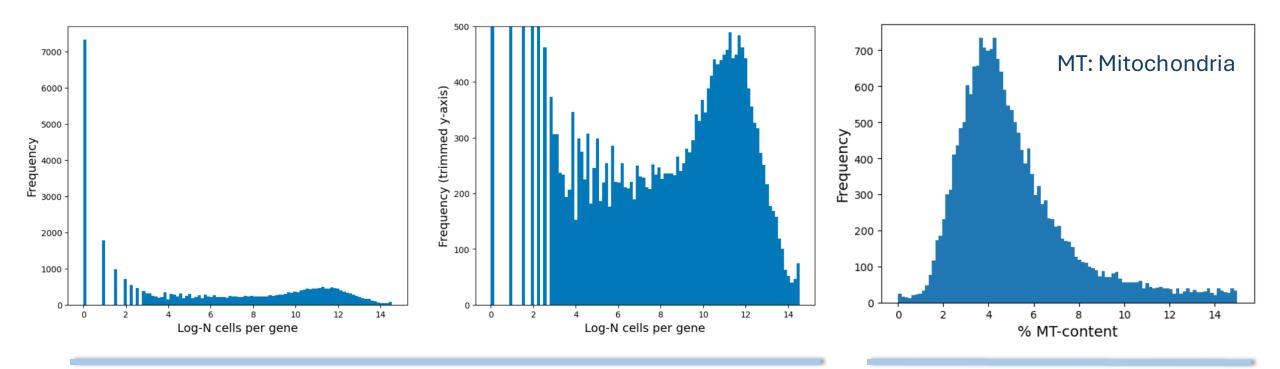
•

UMAP

- Phenograph clustering
- CellTypist
- Diffusion maps

For further details on data analysis pipeline, please check <u>Github_Repository</u>

Preprocessing

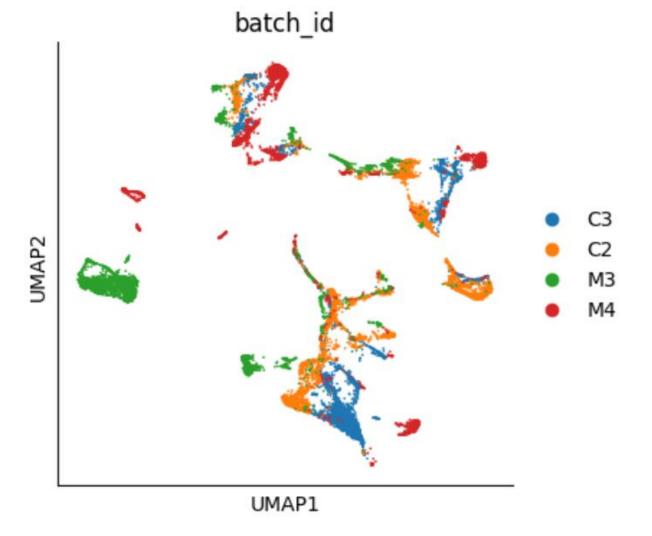


The distribution plots help assess the spread of gene expression across cells and help identify an appropriate threshold for filtering out low-expressed genes. The plot confirms the removal of unhealthy cells with MT content greater than 15%.

Dimensionality Reduction and Visualization

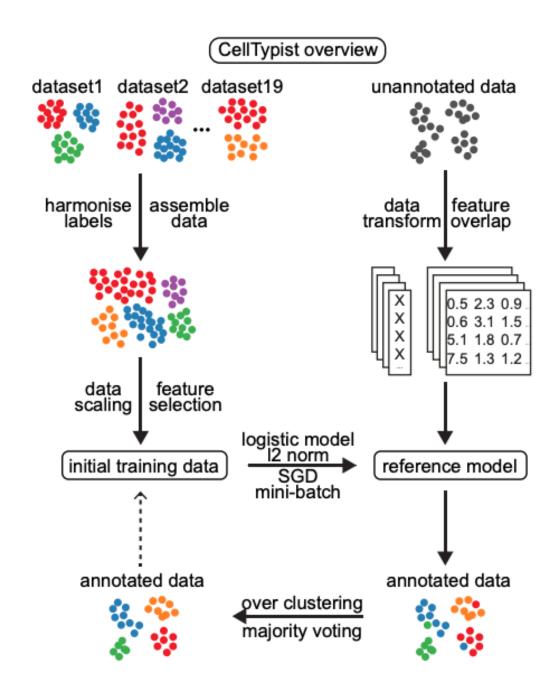
UMAP helps distinguish tumor cells from healthy cells.

- Healthy cells: C2, C3
- Tumor cells: M3, M4



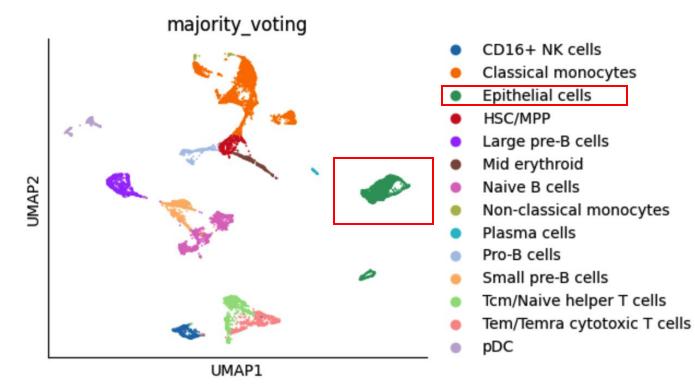
Cluster annotation to know what are the cell types (supervised model-Celltypist)

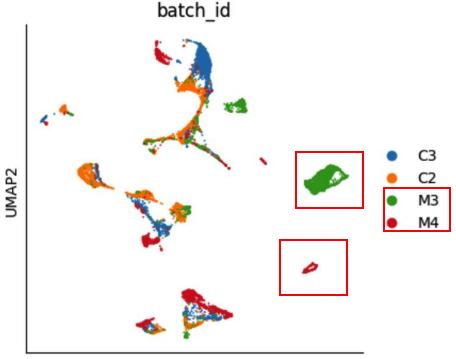
- Logistic Regression with Stochastic gradient descent (SGD)
- L2 regularization/ Ridge regularization
- Train model, select features, train model again
- Using CellTypist models to annotate gives you two different kinds of labels and a confidence score:
 - Option 1: Most confident cell type
 - Option 2: A list of possible cell types with confidence level
- Use of Immune cell markers for our purpose



Celltypist – annotate at a cluster level

Epithelial cells are nontumor/cancer cells

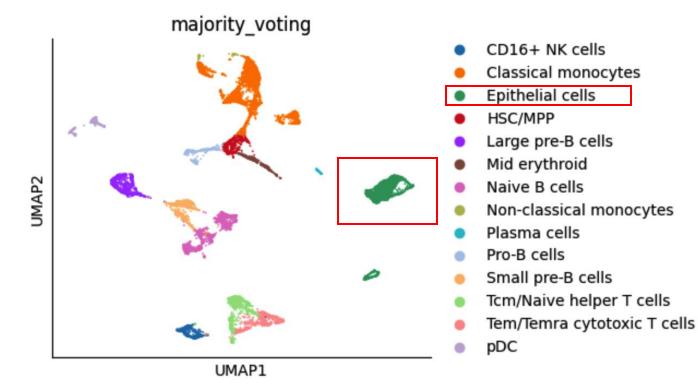


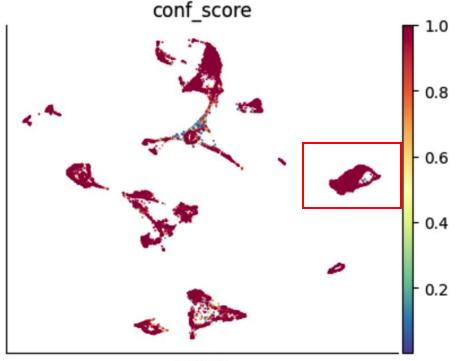


UMAP1

M3 & M4 are cancer/tumor samples

Quantitative validation of the predictionconfidence score



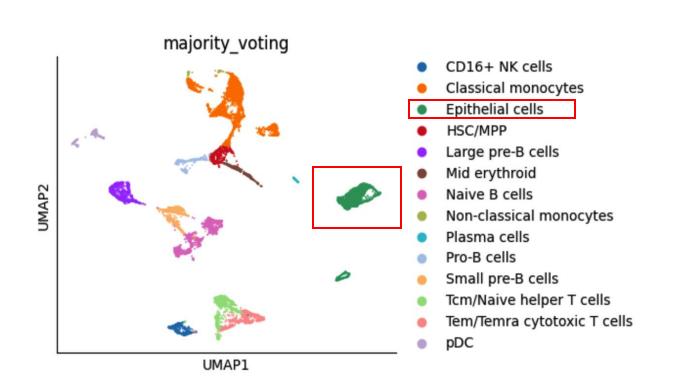


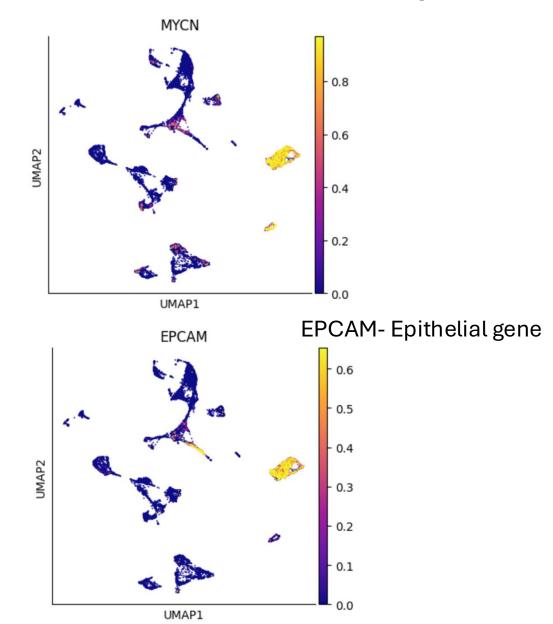
UMAP2

UMAP1

Biological validation of the prediction

MYCN- tumor gene





Strengths/weakness/implication of the approach

- Strengths:
 - high confidence scores for most clusters
 - biological validation confirms the prediction
- Weakness:
 - Reference datasets are limited (the field is expanding)
- Implication:
 - This approach uncovers tumor-epithelial interactions within tumor clusters, providing critical insights for therapies targeting tumor plasticity and microenvironment dynamics.
- Next step:
 - Targeted therapy that could disrupt tumor-epithelial interactions