OCCUPANCY MODELING OF BIRDS IN THE AMAZON RAINFOREST

by Jeremy Borden, Chelsey Hunts, Dawit Mengesha, Yusup Amat, Sriram Raghunath

a MA mali

BACKGROUND

Observational flow chart relevant for occupancy modeling. The red box contains the possibility of imperfect detection. Variables y and z correspond to detection and occupancy, respectively. Taken from <u>kevintshoemaker.github.io</u>, produced by Morgan Byrne, James Golden.

OCCUPANCY MODELS TRY TO ACCOMMODATE IMPERFECT DETECTION

PROJECT GOALS

Has climate change or forest loss affected bird populations in the Amazonas region of Brazil over the last 12 years?

> Tested this for two species: Generalist species: Black vulture (Coragyps atratus) Forest specialist: Screaming piha (Lipaugus vociferans)

Test performance of various occupancy models

DATA COLLECTION

EBird Data: 2012-2021 https://ebird.org/home

Climate Data (Worldclim): Temperature and precipitation https://www.worldclim.org/data/worldclim21.html

Tree cover and tree cover loss Data: Longitude Enhanced Vegetation Index (EVI), Tree cover loss, Tree cover loss by fires https://lpdaac.usgs.gov/products/mod13q1v061/; https://www.globalforestwatch.org/dashboards/country/BRA/

DATA COLLECTION

 Occupancy covariates: Precipitation, Temperature, EVI, Tree Cover Loss, Tree Cover Loss by Fires

• Detection covariates: Year, Day of Year, Time of Day, Number of Observers, Effort Hours, Effort distance

ML PREPROCESSING

Interested in the effects of environmental covariates <u>over time</u>. But still want to model occupancy as with <u>supervised learning (classification) techniques</u>. Solution: <u>Create new features shifted by a time step</u>

yu			
νO		0	
y1		1 /	
y2		2 /	
уЗ		3	
y4		4	
Target	Time Step	Feature (t)	Feature (t-1)

Use value of Feature at Time Step t-1 to predict Target at Time Step t Our shifted features: *EVI, tree cover loss, precipitation, temperature, and previous occupancy*

ML MODELING APPROACH 1

1. BINARY LOGISTIC REGRESSION

Implemented with L1 regularization for feature selection

- 1. Effort hours (Detection covariates)
- 2. Minimum temperature (Occupancy covariates)3. Species previously observed

ML MODELING APPROACH \geq

2. (BALANCED) RANDOM FOREST

eBird data tends to suffer from <u>class imbalance</u> To accomodate this, we implement a <u>balanced random forest</u> – like a traditional random forest but draws a bootstrap sample from the minority class and samples the same number from the majority class.

BEST ML MODEL

Also try augmenting our ML approaches with Synthetic Minority Over-Sampling Technique (SMOTE) - generate synthetic data for minority class to help with class imbalance

Image from: 'Cross Validation in Time Series,' Soumya Shrivastava, Medium

Compare our ML models with rolling cross-validation

Best ML classification model -Binary logistic regression with L1 regularization and SMOTE (based on F1 score)

MODELING APPROACH

3. SPOCCUPANCY MODELS IN RSTUDIO BASIC MODEL STATEMENT

We use spOccupancy library in R to fit a spatial occupancy model.

This will allow us to accommodate imperfect detection.

Our occupancy covariates are temperature, precipitation, tree cover loss, EVI

While our detection covariates are day-of-the-year, time-of-day, effort, and number of observation

- $y_i | z_i \sim \text{Bernoulli} (p \cdot z)$ $z_i \sim \text{Bernoulli}(\psi)$
- $\operatorname{logit}(p) = \alpha_0 + \sum_j \alpha_j \cdot A_j$ $\operatorname{logit}(\psi) = \beta_0 + \sum_{i} \beta_j \cdot B_j$
 - with

 $y_i = \text{data at site i}$

- p = detection probability
- $z_i =$ true occupancy state at site i
 - $\psi =$ occupancy probability

 $\alpha_i = \text{model parameters relating detection probability and detection covariates } A_i$ β_i = model parameters relating occupancy probability and occupancy covariates B_i

MODELING APPROACH

SPOCCUPANCY MODEL ANALYSIS

Occurrence (logit scale):							
	Mean	SD	2.5%	50%	97.5%	Rhat	ESS
(Intercept) 0.0109	1.6356	-3.1908	0.0053	3.2795	1.0001	6261
precip	0.0080	1.6405	-3.1507	0.0099	3.1966	1.0003	6000
tmin	0.0277	1.6488	-3.2144	0.0509	3.3188	1.0002	6000
tmax	-0.0076	1.6594	-3.2778	-0.0372	3.2979	1.0003	6000
EVI	0.0144	1.6522	-3.2616	0.0334	3.2487	1.0001	6580
umdha	1.7232	0.4624	1.1325	1.7046	2.3602	47.1902	2
umdfire	-1.9763	0.2963	-2.5103	-1.9171	-1.5225	14.0234	3

Detection (logit scale):

	Mean	SD	2.5%	50%	97.5%	Rhat	ESS
(Intercept) -2.7726	0.2205	-3.2018	-2.7711	-2.3404	1.0008	5593
doy	0.0027	0.0006	0.0015	0.0027	0.0040	1.0010	5456
tod	-0.0378	0.0142	-0.0658	-0.0376	-0.0096	1.0016	5808
n.obs	0.0764	0.0250	0.0269	0.0763	0.1256	1.0016	6000
effort	0.4051	0.0369	0.3334	0.4050	0.4781	1.0005	5696

Spatial Covariance:

	Mean	SD	2.5%	50%	97.5%	Rhat	ESS
sigma.sq	0.997	3.4121	0.1793	0.5864	3.8768	1.2514	4414
phi	0.000	0.0000	0.0000	0.0000	0.0000	1.0064	4146

- Modelled with both spatial and temporal correlation effects
- as day of year, time of day, number of effort hours, and occupancy covariates such as tree cover loss, and forest fire loss are significant Bayesian p-value, WAIC
- Analysis shows that the detection covariates such • Spatial correlation between sites is very high Performed posterior predictive checks to compute
- Bayesian p-value = 0.7525
- WAIC = 2661.56

RESULTS AND CONCLUSIONS

- Among the ML models, Binary Logistic Regression with SMOTE performed better than the others
- performed similarly well

- between sites.
- Variable and sometimes strong class imbalance • Environmental data collected at different frequencies in time.

Future directions

- Implement spatial correlation with ML models

• Among the occupancy models, SpOccupancy models tPGOcc and stPGOcc

Limitations

• Sites clustered in the same region -- low variance in occupancy covariates

• Model with more species across multiple sites in the Amazon rainforest

THANK YOU!