# Predicting winners in esports tournaments (Super Smash Bros Melee)



THE ERDŐS INSTITUTE

Helping PhDs get and create jobs they love at every stage of their career.

Dan Ursu Jaspar Wiart

# The setup

- Fighting game released in 2001
- Tournaments with tens of thousands in prizes
- Viewership in the hundreds of thousands

## The goal is simple: <u>Predict the winner</u>



## The dataset

Courtesy of smashdata.gg, have tournament data from 2015 onwards on <u>github</u> Includes 1,800,000 **sets** played in 39,000 **tournaments** between 96,000 **players**.

### Pros:

- Large dataset
- Easy to obtain

## Cons:

- Large dataset
- Missing values, few ready features

## Therefore, **more**:

- Feature engineering
- Efficient code

and, **less**:

- Super fancy Al



## The baseline

Sports typically have Elo or Elo-like score keep track of player skill levels over time.

Currently popular: **Glicko-2** (c.f. <u>Wikipedia</u>)

Baseline model: "whoever has the highest Elo"

**Note:** Glicko-2 is quite sophisticated, and predicting sports outcomes is <u>hard</u>.

Any small improvement on baseline is a success.



# Engineered features

In Super Smash Bros, players choose **characters** to fight with.

Perhaps some players do better depending on the opponent's **character**?

Most important engineered features:

Modified "Elo" scores that take into account characters played.

Three variations: "alt", "alt2", "alt3".

#### Character vs character win rates



#### ELOs over time for pro player "aMSa"



# A model for individual matches

| Model                                    | Accuracy<br>(all matches) | Accuracy<br>(top 8 matches) |
|------------------------------------------|---------------------------|-----------------------------|
| "Who has the highest Elo"                | 77.56 ± 0.16              | 73.89 ± 0.36                |
| XGBoost on default Elo only              | 79.05 ± 0.16              | 74.04 ± 0.36                |
| XGBoost on all<br>engineered<br>features | 79.89 ± 0.16              | 75.03 ± 0.35                |

Some observations:

- A definitive increase in accuracy of about 1%
- Accuracy on top 8 sets is decreased (substantially lower skill difference)

(with 95% confidence intervals)

## Feature importance



# The graveyard of failed ideas, I

Linear models for subsets of data:

"High-quality" data followed multivariate normal distributions.

- Tried splitting off this data and applying logistic regression or LDA
- Tried rolling our own errors-in-variables version of LDA

**Underperformed XGBoost** 

Default ELOs for "high-quality" data







# The graveyard of failed ideas, II

Predicting the winner of the top 8 finalists:

Computed pairwise probabilities using single-match model and go from there.

- Tried feeding these + pre-top-8 performance data into XGBoost.
- Tried simulating all ways top 8 could play out.

**Did not outperform baseline**  $(70.2 \pm 1.3)$ 



## In summary

**Conclusion:** 

- Engineered modified Elo variants that take into account characters
- Model trained on all engineered features performed better than just using default Elo

## Future work:

- Trying other, more sophisticated models (neural nets, etc...)
- Seeing if top 8 predictor can be used for predicting upsets and other tasks
- Seeing if engineered features are applicable to other esports

