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The setup

fau NINTENDO
GAMECUBE

(5]
- Tournaments with tens of thousands in prizes T SET ER

- Viewership in the hundreds of thousands uu

- Fighting game released in 2001

The goal is simple: Predict the winner




The dataset

Courtesy of smashdata.gg, have tournament data from 2015 onwards on github

Includes 1,800,000 sets played in 39,000 tournaments between 96,000 players.

Pros: Cons:

- Large dataset - Large dataset

- Easy to obtain - Missing values, few ready features
Therefore, more: and, less:

- Feature engineering - Super fancy Al

- Efficient code



https://github.com/smashdata/ThePlayerDatabase

The baseline

Distribution of ELO Ratings in 2023 Sets

Sports typically have Elo or Elo-like score keep

[ Non Top-8

track of player skill levels over time. ey
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Currently popular: Glicko-2 (c.f. Wikipedia)

Baseline model: “whoever has the highest Elo”

Note: Glicko-2 is quite sophisticated, and
predicting sports outcomes is hard.

Any small improvement on baseline is a
success.
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https://en.wikipedia.org/wiki/Glicko_rating_system

Character vs character win rates
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In Super Smash Bros, players choose marth 1 .. 52
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depending on the opponent’s character? " _ B

ELOs over time for pro player "aMSa"
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Most important engineered features:

2500 A

Modified “Elo” scores that take into account ™
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A model for individual matches

Model Accuracy Accuracy Some observations:
(all matches) (top 8 matches)

YWho has the 7756016 | 73.89+0.36 - Adefinitive increase in_
highest Elo accuracy of about 1% &5
XGBoost on

79.05+0.16 74.04 + 0.36 :
default Elo only - Accuracy on top 8 sets is
XGBoost on all decreasgd (_substantlally
engineered 79.89 + 0.16 75.03 £ 0.35 lower skill difference)

features

(with 95% confidence intervals)



Feature importance
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Default ELOs for "high-quality" data

The graveyard of failed ideas, | 2500 | 7w
Linear models for subsets of data: g |
“High-quality” data followed multivariate 1000 -

normal distributions.
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- Tried splitting off this data and applying

T _ "alt2" ELOs for "high-quality" data
logistic regression or LDA

2500 A

2000 -

- Tried rolling our own errors-in-variables
version of LDA

1500 +

pl “alt2" ELO

1000 A
B pl wins

Underperformed XGBoost m= p2 wins
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The graveyard of failed ideas, |l

Predicting the winner of the top 8 finalists:

Computed pairwise probabilities using
single-match model and go from there.

- Tried feeding these + pre-top-8
performance data into XGBoost.

- Tried simulating all ways top 8 could play
out.

Did not outperform baseline (70.2 £ 1.3)

Single-match
predictor

Trained up to
2022

Other
engineered
features for
tournaments

~_

Top 8 predictor
Trained on 2023

Test on 2024




In_ summary

Conclusion:

- Engineered modified Elo variants that take into account characters
- Model trained on all engineered features performed better than just using
default Elo

Future work:

- Trying other, more sophisticated models (neural nets, etc...)
- Seeing if top 8 predictor can be used for predicting upsets and other tasks
- Seeing if engineered features are applicable to other esports
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