

D&D Combat Length Predictions

Erdős Institute Data Science Boot Camp

Guiding Question

• Given information about the starting state of a combat encounter, how many rounds should the encounter take?

Guiding Question

• Given information about the starting state of a combat encounter, how many rounds should the encounter take?

• Useful for game masters crafting encounters for their players.

Data Preparation

- FIREBALL dataset: ~25,000 files, each depicting a unique combat encounter.
 - Scraped from AVRAE, a Discord bot which helps players run online D&D sessions.

Data Preparation

- FIREBALL dataset: ~25,000 files, each depicting a unique combat encounter.
 - Scraped from AVRAE, a Discord bot which helps players run online D&D sessions.

• Format: Nested dictionaries, containing combat state updates, player state updates, commands issued, etc.

Data Preparation

- FIREBALL dataset: ~25,000 files, each depicting a unique combat encounter.
 - Scraped from AVRAE, a Discord bot which helps players run online D&D sessions.

• Format: Nested dictionaries, containing combat state updates, player state updates, commands issued, etc.

- Features extracted:
 - Party size
 - Player average level
 - Monster party size
 - Monster average level

<u>Purpose</u>

• Visualization of how features we use in the data is distributed

<u>Purpose</u>

- Visualization of how features we use in the data is distributed
- Visualization of correlations between the features

<u>Purpose</u>

- Visualization of how features we use in the data is distributed
- Visualization of correlations between the features

<u>Results</u>

• Diagonal plots show data distribution

<u>Purpose</u>

- Visualization of how features we use in the data is distributed
- Visualization of correlations between the features

<u>Results</u>

- Diagonal plots show data distribution
- Off Diagonal plots show that there are not too many correlations

Baseline Models - Mode

Baseline Model

• Mode Baseline

Cross-Validation MSE

5.941

Baseline Models - Median

Baseline Model

- Mode Baseline
- Median Baseline

Cross-Validation MSE

5.941 5.766

Baseline Models - Mean

Baseline Model

- Mode Baseline
- Median Baseline
- Mean Baseline

Cross-Validation MSE

5.941 5.766 4.822

Initial Advanced Model - Linear Regression

<u>Model</u>	Cross-Validation MSE
Mode Baseline	5.941
Median Baseline	5.766
Mean Baseline	4.822
Linear Regression	4.059

More Advanced Models

- Ensembles of Trees!
 - Random Forest
 - Gradient Boost
 - XGBoost
- Grid Search for Hyperparameter Tuning

Ensembles of Trees

<u>Grid Search for Hyperparameters</u>

<u>Goal</u>

 Have systematic approach for finding the best hyperparameters for each ensemble learning model

<u>Method</u>

• Use Grid Search for each model

Random Forest Regressor

Histogram-based Gradient Boost

Newton Boosting

Gradient & Curvature/Hessian Newton Raphson Method

-XGBoost

Sequential Learning

Additive Strategy Adding a weak learner at a time

Parallel Computation

System Optimization Enhancing Computational Efficiency

Comparing the Models

Model Name	Average Cross-Validation MSE
Mode Baseline Model	5.941
Median Baseline Model	5.766
Mean Baseline Model	4.822

Comparing the Models

Model Name	Average Cross-Validation MSE
Mode Baseline Model	5.941
Median Baseline Model	5.766
Mean Baseline Model	4.822
Linear Regression Model	4.059
Tuned Random Forest Model	3.880
Tuned Gradient Boost Model	3.797
Tuned XGBoost Model	<u>3.788</u>

Our Final Model - XGBoost + Feature Importance

Fit our tuned XGBoost to whole training set:

Tuned XGBoost	Final MSE = 3.625

Our Final Model - XGBoost + Feature Importance

Fit our tuned XGBoost to whole training set:

Tuned XGBoost	Final MSE = 3.625

Computed Feature Importance on whole set:

<u>Feature</u>	Importance Score
Party Size	0.107
Average Party Level	0.093
Monster Party Size	<u>0.688</u>
Average Monster Level	0.112

<u>A Web App</u>

DnD Combat Length Prediction

Fill in the values below:

 party size (min:1, max:10)
 +

 average party level (min:1, max:20)
 +

 5.00
 +

 monster party size (min:1, max:10)
 +

 3

 3.00
 +

 Combat length prediction:
 +

On the App

Some drawbacks of the app/model:

On the App

Some drawbacks of the app/model:

• The demo shows that the model is suitable for more reasonable data points. That is, a reasonable party size will give a reasonable prediction.

On the App

Some drawbacks of the app/model:

- The demo shows that the model is suitable for more reasonable data points. That is, a reasonable party size will give a reasonable prediction.
- Entering an "unreasonable" party size gives unexpected outputs.

• To further improve the MSE of our final model, the most impactful change we could make is engineering more features.

- To further improve the MSE of our final model, the most impactful change we could make is engineering more features.
- Four features is relatively small, and the model did quite well considering this.

- To further improve the MSE of our final model, the most impactful change we could make is engineering more features.
- Four features is relatively small, and the model did quite well considering this.
- Some possible features to consider which could be extracted from the FIREBALL dataset are various categorical features about the player party, e.g., capturing the party composition, such as how many spellcasters did the party have.